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Abstract 

This review paper encompasses a comprehensive exploration of fatigue failure and fatigue life estimation techniques 

which spans from the classical methods to new and innovative approaches. The paper looks into the limitations and 

advancements of these techniques and highlights their respective strengths and areas for improvement. Some of the 

models such as artificial neural networks and genetic algorithms exhibit clear advantages in terms of processing speed, 

accuracy, and adaptability to diverse materials and loading scenarios. For instance, in estimating fatigue life under 

multiaxial loading, the stress scale factor model emerges as a viable alternative to the critical plane-based approach, as 

this technique offers superior efficiency under both constant and variable amplitude loadings. Additionally, optimization 

algorithms such as artificial neural networks and genetic algorithms show promising potential in efficiently estimating 

fatigue life due to their rapid computational capabilities. Despite the notable successes achieved by these techniques, 

none of them can be ascribed as a universal model capable of accurately estimating the fatigue life of all materials across 

diverse operating conditions as each of the techniques possesses its unique strengths and weaknesses, thus, necessitating 

the study for a better understanding of their applicability. Hence, this paper serves as a valuable compilation of various 

fatigue analysis techniques, targeted at paving the way towards the development of a universal model capable of 

handling different materials and loading conditions. 
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1. Introduction 

Fatigue failure is a critical issue in the field of 

mechanical engineering, as it can lead to catastrophic 

consequences in structures and components subjected to 

cyclic loading [1]. It has been reported that approximately 

half of all mechanical breakdowns can be linked to fatigue 

[2]. Thus, understanding the underlying physics of fatigue 

is crucial for establishing cause-and-effect relationships 

capable of preventing such failure [3]. Experts in 

mechanical design and fatigue analysis have invested 

significant resources in crafting effective approaches to 

evaluate the safety of mechanical parts under dynamic or 

cyclic loads. They have done so through a combination of 

experimental research and predictive modelling 

techniques. [4-9]. In recent years, researchers have 

proposed innovative approaches to improve the accuracy 

and reliability of fatigue life estimation [10, 11]. These 

approaches include the development of multi-axial fatigue 

criteria, strain-based fatigue models, and probabilistic 

methods that account for uncertainties in material 

properties and loading conditions [11]. Additionally, 

advancements in computational modelling and simulation 

techniques have allowed for the analysis of fatigue 

behaviour at the microstructural level, providing insights 

into the mechanisms of fatigue failure [12]. 

Accurately predicting fatigue life in real-world 

situations presents a considerable challenge due to the 

numerous factors at play. Therefore, a thorough 
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examination of mechanical parts under cyclic loading is 

essential to prevent unforeseen and catastrophic failures 

[13]. The effectiveness of fatigue estimation methods 

relies on their capability to consider various elements such 

as non-zero superimposed static stresses, multiaxial stress 

environments, and stress concentration impacts [14]. 

Estimating fatigue life under cyclic and random 

multiaxial loading is particularly intricate because 

damage accumulation relies on variations across all stress 

components throughout the loading period [14, 15]. Thus, 

fatigue assessment methods need to be adjusted to 

integrate experimental data obtained from tests conducted 

according to relevant standard codes, as this will enhance 

the accuracy of fatigue predictions [5, 13, 14, 16, 17]. 

Standard codes, such as those provided by organizations 

like ASTM International and ISO, define specific testing 

procedures and protocols for evaluating the fatigue 

behaviour of materials and components. These codes 

outline the test configurations, loading conditions, and 

data collection methods to ensure consistency and 

comparability of results. By conducting tests according to 

these standard codes, researchers and engineers can obtain 

experimental data that represents realistic operating 

conditions and material responses. This data is essential 

for calibrating and validating fatigue assessment methods, 

improving the accuracy of fatigue predictions, and 

ensuring the reliability of mechanical designs. Examples 

of such standard codes include ASTM E647 for fatigue 

crack growth testing, ASTM E466 for tension-tension 

fatigue testing, and ISO 12106 for axial fatigue testing of 

metallic materials. Furthermore, through the simple 

utilization of linear elastic finite element (FE) models, 

fatigue damage can be accurately estimated from stress 

analysis results [18-20].  

This paper presents various fatigue life estimation 

techniques, with a focus on newly proposed models that 

aim to address limitations in older approaches, 

particularly in the accurate estimation of fatigue life under 

specific loading or material conditions. However, it is 

recognized that no universally applicable model exists for 

predicting fatigue life across diverse loading and material 

scenarios [5, 21]. The development of a universally 

applicable model for predicting fatigue life is challenging 

due to several factors. First, fatigue life estimation 

depends on various elements such as non-zero 

superimposed static stresses, multiaxial stress 

environments, and stress concentration impacts. These 

factors introduce complexity and variability into the 

loading conditions, thus, making it difficult to capture all 

possible scenarios with a single model. Additionally, 

different materials exhibit unique fatigue behaviour, and 

their response to cyclic loading can vary significantly. 

Therefore, it is challenging to develop a single model that 

accurately captures the fatigue life of all materials. It is 

worth noting that the limitations arise from the need to 

consider material-specific characteristics, loading 

conditions, and the availability of experimental data for 

model calibration. Thus, the development of a universally 

applicable model requires further research and a better 

understanding of the complexities involved. This review 

paper also serves as a compilation of innovative concepts 

about fatigue failure and fatigue life estimation methods 

and its application could pave the way for the 

development of a widely accepted model capable of 

addressing a broad spectrum of fatigue estimation 

challenges. 

 

2. Fatigue Failure 

In engineering, fatigue is a term used to describe the 

failure of materials or engineering components when 

subjected or exposed to "cyclic or dynamic" loading that 

is below the yield strength of such material or component 

[22]. The term "fatigue" originates from the Latin word 

'fatigare', signifying 'to tire'. In other words, the term 

describes the gradual weakening of the material over 

repeated loading cycles, which can arise from mechanical, 

thermal, or other forms of cyclic loading. Fatigue failure 

can manifest in two forms: LCF (low cycle fatigue) or 

HCF (high cycle fatigue). HCF typically occurs due to 

small elastic strains over a high number of cycles, and the 

stress causing the failure is a combination of mean stress 

and alternating stresses that are induced by mechanical or 

thermal loading at varying frequencies [23, 24]. 

Conversely, LCF is distinguished by significant plastic 

strains of low frequency, resulting in failure after a 

comparatively small number of cycles [25]. 

Fatigue cracking is a significant damage mechanism in 

structural components, and it results from fluctuating 

stresses that are below the material’s ultimate tensile or 

yield strength [1, 26]. Unlike other failure modes where 

the original design strengths are exceeded, fatigue damage 

can occur at low stress without visible warning signs, thus, 

making this failure hazardous. In the case of a component 

exposed to cyclic loading, the fatigue life is determined 
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by the number of stress or loading cycles necessary to 

initiate and propagate a crack to a critical size. This 

process typically occurs in three phases: initial slow crack 

initiation, followed by stable crack expansion, 

culminating in rapid fracture. The occurrence of fatigue 

damage at low-stress levels without visible warning signs 

poses a significant safety concern for mechanical parts 

under cyclic loading. Unlike other failure modes where 

the original design strengths are exceeded, fatigue failure 

can initiate and propagate even at stress levels below the 

yield strength of the material. This means that parts 

subjected to cyclic loading may experience fatigue 

damage without any visible indications, such as 

deformation or cracking until a critical point is reached. 

This makes it challenging to detect and predict the 

remaining fatigue life of components, thus, increasing the 

risk of unexpected and catastrophic failures. Therefore, 

understanding fatigue behaviour and accurately 

estimating fatigue life are crucial for ensuring the safety 

and reliability of mechanical parts under cyclic loading. 

During fatigue failure, dislocations accumulate near 

stress concentrations, thus, forming structures known as 

persistent slip bands (PSBs) after numerous loading 

cycles, and these PSBs formed, act as stress amplifiers for 

the initiation of micro-cracks. The initiated micro-cracks 

by the PSBs nucleate along high-shear stress planes, often 

at a 45-degree angle to the loading direction.   Over time, 

the micro-cracks propagate perpendicular to the 

maximum tensile stress, where the few larger cracks 

dominate over the remaining smaller cracks. Continuous 

cyclic loading of such components leads to the continuous 

growth of the cracks and this will continue until the 

remaining intact section of the component can no longer 

withstand the load [1]. This critical point marks the point 

where fracture toughness is surpassed and sudden or rapid 

failure of the remaining material cross-section is 

inevitable. This stage is known as the third stage of fatigue 

failure, and it signifies the stage when the component 

experiences rapid overload fracture.  

In fatigue analysis, uniaxial loading involves the 

application of cyclic stress in a single direction, and this 

provides the fundamental data on material response to 

cyclic loading [27, 28]. Fatigue testing under uniaxial 

conditions is straightforward in both its execution and 

analysis, thus, making it widely used [27, 29]. However, 

it oversimplifies real-world conditions, hence, limiting its 

representation and potentially leading to conservative or 

inaccurate fatigue life predictions for complex 

components [27]. Multiaxial loading on the other hand 

considers the interaction of stresses from multiple 

directions simultaneously, thus, accounting for complex 

stress states experienced by real-world structures and 

components [27, 30]. Conducting multiaxial fatigue 

analysis on a component helps to provide a 

comprehensive understanding of the material behaviour 

of such components under realistic loading conditions and 

allows for a more accurate fatigue life assessment of the 

component [30, 31]. However, it is more complex and 

requires sophisticated numerical methods and specialized 

testing equipment for experimental validation [27]. 

In real-world scenarios, the multiaxial nature of 

stresses introduces variability and complexity to loading 

conditions. For components under cyclic loading, 

multiaxial loads can manifest as either in-phase also 

known as proportional loads or out-of-phase also known 

as non-proportional loads, as frequently in a range of 

components and structures across industries such as 

aerospace, automotive, and power generation [32]. Even 

when subjected to uniaxial loads, multiaxial stresses may 

arise, even if the loading modes resemble in-phase loading 

due to geometrical constraints at notches. In cyclic-loaded 

components, non-proportional multiaxial fatigue damage 

may occur due to variations in principal axis directions 

induced by out-of-phase bending and torsional moments 

during loading [33]. However, strategies for handling 

very complex multiaxial variable loadings, particularly 

non-proportional loads, are not yet well established [34]. 

An established approach to estimating fatigue life under 

multiaxial stress entails simplifying the three-dimensional 

stress condition to an equivalent uniaxial state using 

suitable fatigue failure criteria [35-39], as illustrated in 

Figure 1. 

The utilization of multiaxial fatigue failure criteria 

enables the translation of stress histories into equivalent 

stress, thus, enabling analysis similar to the uniaxial case. 

This approach facilitates the counting of fatigue cycles 

and the determination of how fatigue damage is 

accumulated of fatigue [40]. Figure 1 illustrates an 

algorithm that selectively identifies and reduces the three-

dimensional (3D) stress state at any given time, and 

maintains the equivalent stress frequency range relative to 

the component's stress state. To meet these criteria, Macha 

[36, 37, 41], Łagoda and Ogonowski [37, 38] proposed a 

linear criterion grounded in the critical plane concept.  
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Figure 1. Transformation from multiaxial stress state to uniaxial stress state during the estimation of fatigue life [40].

 

This method effectively transforms the stress state 

from 3D to equivalent uniaxial stress, requiring separate 

cycle counts for damage calculation based on these 

equivalent stress histories [40]. 

 

3. Conventional Methods for Fatigue Life 

Estimation  

In this section, conventional fatigue life estimation 

models employed over time are discussed. These 

models include equivalent stress, strain, and energy-

based approaches. The symbols used for the different 

models and their descriptions are illustrated in Table A1 

in the appendix. 

 

3.1. Fatigue analysis models using equivalent 

stress  

Equivalent stress-based models are widely utilized 

in fatigue analysis to simplify the complex stress states 

experienced by materials under cyclic loading 

conditions [42]. The concept of equivalent stress allows 

engineers to represent the combined effect of multiaxial 

stresses as a single, uniaxial stress component that 

captures the overall impact of various stress 

components on fatigue behaviour. By reducing the 

multidimensional stress state to a single value, 

equivalent stress-based models provide a practical and 

efficient approach to predicting the fatigue life of 

components and structures, nevertheless, their accuracy 

when dealing with non-proportional loading histories 

has raised some questions [43].  

According to the proposed maximum normal stress 

criterion stress [37], fatigue in materials is primarily 

attributed to the range of maximum normal stress. 

Therefore, the hypothesis assumes that applying static 

effort to cyclic loading results in an equivalent stress 

range, as depicted in Equation (1). In this model, it is 

assumed that the critical plane contains the range of 

maximum normal stress, and the multiaxial stress state 

is simplified to uniaxial using the equivalent stress 

range ∆σeq, which corresponds to the maximum normal 

stress range ∆σ1. 

∆σeq = ∆σ1 (1) 

According to Tresca’s hypothesis [37], fatigue in a 

material is attributed to the maximum shear stress range 

value. This criterion, as outlined in Equation (2), 

identifies two critical planes perpendicular to each 

other, as the maximum shear stress consistently arises 

in two perpendicular planes. 

∆τ13 =
∆σeq

2
=
∆σ1 − ∆σ3

2
 (2) 

The fatigue damage criterion proposed by Sine [44] 

and Sine [45] involves an equivalent stress derived from 

the alternating octahedral shear stress. Their 

investigation concluded that the octahedral shear stress 

criterion stated in Equation (3) lacks effectiveness in 

dealing with non-proportional loading. 

∆τoct + α(3σh) = β (3) 

But,  

α =
2√2

3

(σ−1 −
σ0
2
)

σo
 (4) 
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β =
√3

2
σ−1 (5) 

The amplitude of the octahedral shear stress can be 

expressed using the alternating stress tensor 

components σij,a(i, j = 123) [46] as shown in Equation 

(6). 

∆τoct

= √
1

6
[

(σ11,a − σ22,a)
2
+ (σ22,a − σ33,a)

2
+

(σ33,a − σ11,a)
2
+ 6(σ12,a

2 + σ23,a
2 + σ31,a

2 )
] (6) 

A parameter similar to that of Sines’s Equation (3) 

was proposed by Crossland [47] but with a modification 

that uses maximum hydrostatic stress σh max in place of 

mean stress as depicted in Equation (7). This 

modification helps to address issues encountered when 

dealing with out-of-phase multiaxial loading [21]. 

∆τoct + α(3σh max) = β (7) 

 

The fatigue life parameter expressed in Equation (8) 

was proposed by Findley [48] and the expression was 

derived from the combination of shear stress and 

nominal stress on the plate with the highest parameter 

value.  

[τa,n + kσn]max = f (8) 

But  τa,n =
∆τ

2
 therefore, the parameter can be 

expressed as shown in Equation (9) 

[
∆τ

2
+ kσn]

max
= f (9) 

The material constants denoted as k and f, can be 

obtained through two fatigue loading tests: one 

involving alternating normal stress and the other 

involving pulsating normal stress. 

A similar model to that of Findley’s was proposed 

by McDiarmid [49, 50] as expressed in Equation (10). 

In the proposed model, the critical plane is identified as 

the one with the maximum shear stress range, although 

it yields results that are widely scattered. 

McDiarmid [37, 38] introduced a model akin to 

Findley’s, as illustrated in Equation (10). In this model, 

the critical plane is determined as the one with the 

maximum shear stress range, despite producing results 

that are considerably scattered. 

∆τmax
2tA,B

+
σn,max
2σuts

= 1 (10) 

The Van Dang model also referred to as the 

endurance limit criterion, was introduced by Van [51]. 

He provided an expression, as shown in Equation (11), 

based on the concept of micro-stress developed within 

a critical volume of material. This criterion operates on 

two-scale approaches, permitting fatigue crack 

initiation at the grain level persistent slip bands (PSBs) 

due to alternating shear stresses. Dang Van fatigue 

failure criterion which focuses on micro-stress in the 

meridian plane, is depicted in Figure 2. In the Figure, 

the path of the safe stress is represented with a solid 

green line and the path of the stress leads to fatigue 

fracture is represented with a dashed blue/red line. 

τ(t) + aσh(t) = b (11) 

 
Figure 2. Fatigue failure criterion by Dang Van with a focus 

on micro-stress in the meridian plan [51]. 

 

3.2. Fatigue analysis models using equivalent 

strain 

Fatigue analysis models that utilize equivalent strain 

are valuable tools in estimating the fatigue life of 

materials under cyclic loading conditions [52]. The 

models aim to simplify the complex strain states 

experienced by materials during fatigue loading by 

representing the overall impact of various strain 

components as a single, equivalent strain value [53]. 

Similar to equivalent stress models, equivalent strain 
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models streamline the analysis process by reducing the 

multidimensional strain data to a single, uniaxial 

representation, providing a more straightforward 

approach to assessing fatigue damage and estimating 

the remaining useful life of components [53]. By 

transforming the multiaxial strain state into a scalar 

quantity the equivalent strain model enables a 

comprehensive assessment of strain accumulation and 

deformation, thus, aiding in the understanding of how 

different strain components contribute to fatigue failure 

[53].  

Kandil and Brown [54] along with Brown and Miller 

[55, 56], introduced a parameter that is grounded on the 

assumption that fatigue failure is governed by the 

maximum shear strain plane and normal strain range. 

They proposed that fatigue failure occurs on the plane 

undergoing the highest shear strain range, as depicted in 

Equation (12). 

S∆εn +
∆γmax
2

= A
σf − 2σn,mean

E
(2Nf)

b

+ Bεf(2Nf)
c 

(12) 

The initial model introduced by Brown and Miller 

[55] underwent modification by Wang and Brown [57]. 

In their modification, as illustrated in Equation (13), 

they integrated extra parameters into the equation to 

accommodate the strain path effect. 

The initial model introduced by Brown and Miller 

[41] underwent modification by Wang and Brown [43]. 

In their modification, as illustrated in Equation (13), 

they incorporated extra parameters into the equation to 

accommodate the strain path effect. 

∆γ́

2
= Sεn

∗ +
∆γmax
2
= (1 + ve
+ (1 − ve)S). σf

′(2Nf)
b + (1

+ vp + (1 + vp). Sεf
′. (2Nf)

c 

(13) 

Consequently, the maximum Wang-Brown damage 

expression they obtained based using the maximum 

shear strain plane for the critical plane is as shown in 

Equation (14). 

MDPWB =
Max
t
(S∆εn

∗ + γa) (14) 

 

3.3. Fatigue analysis models utilizing strain 

energy-based approach 

Fatigue analysis models that utilize strain energy-

based approaches are vital for predicting the fatigue life 

of materials under cyclic loading. These models 

leverage the concept of strain energy to evaluate the 

impact of cyclic loading on material deformation and 

damage accumulation, thus, providing a comprehensive 

framework for fatigue behaviour analysis. By 

quantifying the energy absorbed and dissipated during 

loading cycles, the technique allows engineers to 

understand how materials respond to fatigue loading 

and predict potential structural failures. These models 

are valuable in assessing fatigue crack growth rates and 

identifying critical areas prone to fatigue damage, 

allowing for targeted mitigation strategies and design 

improvements.  

Introduced by Smith and Watson [58], the Smith-

Watson Topper (SWT) model is a damage model that 

offers a comprehensive approach by integrating both the 

maximum nominal stress and the cyclic normal strain, 

as outlined in Equation (15) for fatigue analysis.  This 

model is specifically valuable for analyzing multiaxial 

stress in materials susceptible to normal cracking. 

Within the SWT model, the critical plane is identified 

as the one with the highest normal stress, thus, 

facilitating the incorporation of mean stresses during 

multiaxial loading [58]. As a result of this, the model 

remains widely utilized for mean stress correction 

purposes. 

σn,max
∆ε1
2
=
(σf

′)2

E
(2Nf)

2b + σf
′εf
′(2Nf)

b+c (15) 

The Smith-Watson Topper damage parameter is 

expressed in  Equation (16). 

MDPSWT =
Max
t
{ε1,σn,max} (16) 

When applying this damage parameter to GH4169 

steel under uniaxial loading, the obtained outcome tends 

to be lower than the calculated result [59-62]. 

Consequently, while this method tends to overestimate 

multiaxial fatigue life, it provides a satisfactory life 

prediction for uniaxial [59]. 
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In the modification to the Brown and Miller model, 

Fatemi and Socie [63] replaced the nominal strain with 

normal stress, as demonstrated in Equation (17).  They 

also transformed the shear fatigue properties into 

uniaxial fatigue properties [63-65]. The normal stress 

term was modified to incorporate cyclic hardening that 

occurred during out-of-phase loading. Moreover, they 

incorporated cyclic hardening developed during out-of-

phase loading into the normal stress term. This 

modification effectively addressed the mean stress by 

incorporating both the normal mean stress and the 

alternating normal stress along the maximum shear 

plane.  

∆γ

2
(k
σn,max
σy

+ 1) =
τf
′

G
(2Nf)

bγ + γf
′(2Nf)

cγ

= [(ve + 1)
σf
′

E
(2Nf)

b

+ (vp

+ 1)εf
′(2Nf)

c] [k (
σf
′

2σy
(2Nf)

b)

+ 1] 

(17) 

Lui [65] introduced that is centred on virtual strain 

energy (VSE), where the stress and strain ranges are 

multiplied together, as depicted in Equations (18) and 

(19). In the introduced model, the critical plane is 

determined based on the value of the maximum normal 

work, and the VSE quantity is defined as the combined 

normal work and shear work on the critical plane”. This 

approach is tailored to effectively address the prevalent 

tensile failure in the material. Conversely, if the model 

is applied to materials where shear failure is dominant, 

the VSE calculation is adjusted accordingly, as shown 

in Equation (19). 

For tensile failure: 

∆W = (∆σn∆εn)max + (∆τ∆γ) (18) 

For shear dominated failure: 

∆W = (∆σn∆εn) + (∆τ∆γ) (19) 

The effectiveness of the VSE model was 

reevaluation by Lui and Wang [66]. In their 

reevaluation, they discovered that the VSE model did 

well in the prediction of fatigue cracks physical 

characteristics like crack initiation sites, crack 

orientations, and fracture mode. However, the model 

tends to under-predict fatigue life for superimposed 

compressive mean stress. To address this limitation, a 

probabilistic formulation of Lui’s model was proposed 

by Núñez and Calvo [67]. This formulation utilizes a 

perturbation method and statistical moments by using 

the mean and variance of the random fatigue life 

variables. When the results of their analyses were 

compared to the Monte Carlo simulation approach, both 

results were in good agreement, although, experimental 

results were not used as the basis for comparing the 

performance of the model. 

Chu [68] introduced a model with parameters similar 

to those of Lui’s, wherein the shear stress and normal 

work were combined, but the stress range was 

substituted with maximum stresses in order to 

incorporate the mean effect, as illustrated in Equation 

(20); and the plane with the highest fatigue parameter is 

defined as the critical plane. 

∆W = (σn,max
∆ε

2
+ τn,max

∆γ

2
)
max

 (20) 

In a related study, Glinka and Wang [69] introduced 

a shear strain energy model that incorporates combined 

tensile and shear mean stress effects as shown in 

Equation (21). In the model that was formulated, the 

critical plane was determined as the plane where the 

highest shear work was experienced. 

∆W =
∆τ

2
.
∆γ

2
(

σf
′

σf − σn,max
+

τf
′

τf − τn,max
) (21) 

Classical methods, such as those based on equivalent 

stress, strain, and energy approaches, have been widely 

employed over time. However, these methods may not 

adequately account for the complexities of real-world 

fatigue behaviour, such as multiaxial stress states or 

uncertainties in material properties and loading 

conditions. Advancements have been made in the 

development of multi-axial fatigue criteria, strain-based 

fatigue models, and probabilistic methods to address 

these limitations. 
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4. Improvement in Fatigue Life Estimation 

Techniques 

Accurately predicting fatigue life is essential for 

ensuring the safety and reliability of mechanical 

components subjected to cyclic loading. However, 

estimating fatigue life in real-world situations is a 

complex task that requires consideration of several key 

requirements. The following requirements must be 

fulfilled to improve the accuracy and reliability of 

fatigue life estimation: 

i. Consideration of loading conditions: Fatigue life 

estimation methods should account for the specific 

loading conditions experienced by the component. 

These include factors such as non-zero 

superimposed static stresses, multiaxial stress 

environments, and stress concentration impacts. The 

ability to capture the variations and interactions of 

all stress components throughout the loading period 

is crucial for accurate fatigue assessment. 

ii. Material-specific characteristics: Different 

materials exhibit unique fatigue behaviour, which 

must be taken into account during fatigue life 

estimation. The response of materials to cyclic 

loading can vary significantly, necessitating the 

development of material-specific fatigue models. 

Understanding the material's fatigue properties, such 

as fatigue strength, endurance limit, and fatigue 

crack growth behaviour, is crucial for accurate 

estimation. 

iii. Experimental data for model calibration: To 

improve the accuracy of fatigue predictions, it is 

essential to calibrate and validate fatigue assessment 

methods using experimental data. This data should 

be obtained from tests conducted according to 

relevant standard codes, such as ASTM International 

and ISO, which define specific testing procedures 

and protocols. By conducting tests according to 

these standards, researchers and engineers can 

obtain realistic operating conditions and material 

responses, leading to more reliable fatigue life 

estimations. 

iv. Incorporation of uncertainty: Fatigue life 

estimation methods should consider uncertainties in 

material properties and loading conditions. 

Probabilistic approaches can be employed to account 

for these uncertainties and provide a more realistic 

assessment of fatigue life. By considering the 

statistical distribution of material properties and 

loading variables, the reliability and confidence of 

fatigue predictions can be improved. 

v. Computational modeling and simulation: 

Advances in computational modelling and 

simulation techniques have provided valuable 

insights into fatigue behaviour at the microstructural 

level. These techniques allow for the analysis of 

fatigue mechanisms and the evaluation of 

component performance under various loading 

conditions. Incorporating these models into fatigue 

life estimation methods can enhance their accuracy 

and enable a better understanding of the underlying 

fatigue processes. 

By fulfilling these requirements, fatigue life 

estimation methods can be improved, thus, leading to 

more accurate predictions and ultimately enhancing the 

safety and reliability of mechanical components.The 

subsequent section outlines recent progress in the 

techniques employed for predicting multiaxial fatigue 

life. It also examines the strengths and weaknesses of 

various techniques/models. The techniques include 

critical plane analysis, enclosed model approach, 

integral type model technique, material-structured-

based model, stress invariant-based model, statistical 

assessment model method, and plasticity framework 

modelling technique. 

 

4.1. Assessment of multiaxial fatigue using the 

critical plane model 

Assessment of multiaxial fatigue using the Critical 

Plane Model is a valuable method for predicting the 

fatigue life of materials subjected to complex loading 

conditions. The Critical Plane Model focuses on 

identifying the critical planes within the material where 

fatigue damage accumulation is most likely to occur. By 

analyzing the stress distribution on these critical planes, 

one can easily assess the fatigue behaviour of materials 

more accurately, by considering the combined effects of 

normal and shear stresses that vary in different 

directions. This approach is particularly relevant in 

situations where materials experience multiaxial 

loading conditions, such as rotating components or 

structural elements subjected to varying stress states. 

The evolution of critical plane methodologies has 

largely relied on empirical observations of crack 
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initiation and propagation during loading [70]. In 

general, fatigue cracks are known to initiate and grow 

on the critical plane [71], thus resulting in more precise 

life predictions under multiaxial stress/strain conditions 

as compared to uniaxial fatigue models. Consequently, 

several critical plane criteria, that are based on various 

parameters and assumptions have been formulated to 

describe the mechanisms of fatigue failure of different 

materials [70]; and these approaches enable the 

estimation of fatigue life and the determination of crack 

plane orientations [64].  

Critical plane methodologies typically hinge on 

either the maximum principal strain/stress plane or the 

maximum shear strain/stress plane to address various 

types of failures. Consequently, the methodology can be 

categorised into three groups [58]: stress criteria, strain 

criteria, and criteria that integrate both stress and strain 

(also termed energy-based criteria) [44, 49, 59, 60]. 

However, accurately pinpointing the critical plane is 

crucial when employing this approach. This is because 

the critical plane of a component when subjected to a 

complex stress state typically lies near its stress-strain 

concentration, as illustrated in Figures 3 and 4. 

Critical plane approaches typically rely on either the 

maximum principal strain/stress plane or the maximum 

shear strain/stress plane for different types of failures. 

Consequently, they can be categorized into three groups 

[72]: stress criteria, strain criteria, and criteria 

combining both stress and strain (also known as energy-

based criteria) [58, 63, 73, 74]. However, the accurate 

determination of the critical plane is essential when 

employing this approach. This is because the critical 

plane of a component subjected to a complex stress state 

typically lies in the vicinity of its stress-strain 

concentration, as illustrated in Figures 3 and 4.  

 
Figure 3. Critical plane determination for multiaxial stress 

components [70]. 

 
Figure 4. Stress analysis of the element with critical plane 

[70]. 

 

Lee [75] introduced an equivalent stress criterion 

tailored for intricate multiaxial fatigue, and particularly 

suitable for addressing out-of-phase bending and 

torsion. The model performed well when compared 

with other criteria and with different specimens. 

Additionally, Furthermore, Lee adapted the Gough 

ellipse quadrant [76] to integrate the phase difference 

between loadings, as depicted in Equations (22) and 

(23); and the acquired experimental data was validated 

using several materials. 

σeq = σa [1 − (
2𝑏𝑓τa

2tσa
)

α

]

1
α⁄

 (22) 

α = 2(1 + β sin∅) (23) 

Lee also modified Equation (22) and (23) to 

incorporate the bending mean stress. Bending and 

torsion tests conducted on structural steel (SM45C) 

were used to validate the revised equation  [75]. 

σeq =

σa [1 + (
𝑏𝑓k
2t
)
α

]

1
α⁄

[1 − (
σm
σu
)
n

]
 

(24) 

A critical plane model that assesses the maximum 

shear stress amplitude alongside the corresponding 

maximum normal and mean stresses on the identical 

plane was introduced by Lazzarin and Susmel [77]. 
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Later, they developed a modified Wholer curve method 

(MWCM), presented in Equations (25) and (26). 

kτ(ρeff) = aρeff + 𝑏𝑓  (25) 

τA,Ref(ρeff) = αρeff + β (26) 

A simplified approach for applying the theory of 

critical distance (TCD) was presented by Susmel and 

Taylor [78] as outlined in Equation (27). The approach 

used was discovered to be beneficial when evaluating 

the fatigue behaviour of notched components under 

torsional fatigue loading, as the approach only requires 

experimental results from uniaxial tests and linear finite 

element models (FE) for it to be used. 

L =
1

π
(
∆KI,th
∆σo

)
2

 (27) 

Subsequently, a novel method that combines 

MWCM and TCD was presented by Susmel and Taylor 

[14], to accurately estimate the fatigue life of 

components under multiaxial loadings. This method 

proved to be efficient when it was calibrated to utilize 

only the necessary speculative information. Moreover, 

the method has proven effective for estimating fatigue 

lifetime under variable amplitude uniaxial/multiaxial 

fatigue loading by directly examining the elastic stress 

fields causing material damage near stress raisers [5]. 

Building on the combined MWCM and TCD concept, 

Susmel [79] developed a technique for critical plane 

determination. According to this formulation, crack 

initiation occurs on the material’s plane with direction 

along the variance where the resolved shear stress 

reaches its maximum, as depicted in Equations (28)-

(30). A notable feature of this approach is its swift 

determination of the critical plane. This is because the 

time required to identify the global maximum is 

independent of the length of the load history under 

examination. 

Var[τq(t)] = d
T[C]d (28) 

where, 

d = direction cosines, [C] = matrix which consists of 

variance Vi, covariance Ci,j specified as: 

Vi = Var[σi(t)], for i = x, y, z, xy, xz, and yz (29) 

Ci,j = CoVar[σi(t),  σj(t)], for i = x, y, z. xy, xz, 

and yz 
(30) 

Susmel and Taylor [79] reformulated the TCD 

method to incorporate the estimation of fatigue life for 

notched components under various uniaxial loadings. 

They emphasized three types of TCD application: the 

point method, line method, and area method; and 

concluded that the simplest method to apply of the three 

methods identified during load calculation is the line 

method. Additionally, Additionally, a methodology for 

fatigue life estimation under variable amplitude loading 

conditions was presented by Susmel and Tovo [17]. 

This methodology combines MWCM with the 

Maximum Variance Method (MVM) for determining 

the critical plane. They introduced the sum of the 

critical damage parameter, described in Equations (31) 

and (32), which varies depending on the degree of 

multiaxiality and non-proportionality. 

DCR(ρeff) = d1 ∙ ρeff + d2 (31) 

ρeff =
m ∙ σn,m + σn,a

τa
 (32) 

A method for the evaluation of fatigue in notched 

components subjected to variable amplitude loading 

was devised by Susmel and Taylor [5]. This approach 

integrated MWCM with TCD in the point method, thus, 

determining the critical plane through MVM. In their 

conclusion, they stated that this approach offered a high 

level of precision, thus, enabling the design of actual 

components against variable amplitude uniaxial or 

multiaxial loading by analyzing pertinent stress fields 

obtained directly from conventional linear finite 

element models. 

Using the MVM method, Susmel and Tovo [80] 

investigated the degree of multiaxiality and non-

proportionality in applied loading histories. They found 

that the path of maximum variance of resolved shear 

stress accurately estimates the orientation of Stage-I 

crack paths and the accuracy of the estimation can be 

increased for non-proportional loading by using the 

MVM method.  



Science, Engineering and Technology  Vol. 4, No. 2, pp. 123-151 

 

 

133 

Susmel and Louks [81] validated the efficacy of the 

combined TCD (used in the point method) and MWCM 

for the estimation of the fatigue life of components 

under uniaxial/multiaxial loading by utilizing the results 

obtained from finite element analysis software. Their 

results demonstrated a high degree of accuracy in the 

computed fatigue life. 

A fatigue model with the concept based on the 

deviation of the critical plane was introduced by 

Mahadevan and Liu [82], as expressed in Equation (33). 

With this model, fractures are first identified and, 

thereafter, the critical plane is determined at a certain 

deviation from the plane of the fracture surface. This 

idea stemmed from the observation that the initiation of 

crack occurs on one plane while the propagation occurs 

in another, along a different orientation plane. The 

comparison of the model's data with experimental 

results for constant amplitude loading revealed good 

agreement between both data.  Expanding on this, 

Mahadevan and Lui [83] extended the model to 

incorporate anisotropic and composite materials. 

However, they were unable to test the proposed model 

due to a lack of fatigue damage experimental for 

anisotropic materials in the open literature. 

Nonetheless, they concluded that validation of the 

model could be feasible in future studies once the 

necessary data become available. 

fNf =
1

β
√σa,c [(μNf

σm,c
fNf

+ 1)]
2

+ (
fNf
tNf
)

2

(τa,c)
2
+ σa,c

H 2
 (33) 

A non-linear fatigue damage function that adopts the 

critical plane concept for computing fatigue damage 

was introduced by Ninic and Stark [84]. Their 

expression, as depicted in Equation (34), is termed by 

Papuga [21] as the quadratic critical plane formula, and 

it is also identified as the plane where the damage 

function reaches its maximum value. Emphasis is 

placed on the sensitivity factor of the normal stress for 

precise predictions using this fatigue damage function. 

Additionally, the significance of the endurance strength 

ratio in multiaxial fatigue analysis is highlighted. 

D(l,m, n) = [(
τa(l,m,n)

Te
)
2

+ k′ (
σeq(l,m,n)

Se
)
2

]

1
2⁄

  

(34) 

With a focus on the impact of shear stress in relation 

to normal stress, a damage parameter with two similar 

criteria was proposed by Papuga and Ruzicka [85]. The 

expression for the identification of the critical plane 

criteria for the criteria is expressed in Equations (35)-

(37). The objective of the study was to assess the 

effectiveness of incorporating or reducing the load 

effect. Ultimately, both methodologies produced 

similar outcomes based on the dataset presented. 

√acca
2 + bc ∙ (Na +

t−1
f0
∙ Nm) ≤ f−1 (35) 

where, 

k < √
4

3
 ,      ac =

k2

2
+
√k4 − k2

2
,        bc = f−1 (36) 

k ≥ √
4

3
 ,    ac = (

4k2

4 + k2
)

2

,       

bc =
8f−1k

2(4 − k2)

(4 + k2)2
 

(37) 

By incorporating an initial flaw size as illustrated in 

Equations (38) and (39), a critical plane model was 

introduced by Lu and Lui [86]. In the model, they 

employed the maximum normal stress plane along with 

the stress intensity coefficients ratio of mode II to mode 

I, which correspond to the specific crack growth rate in 

order to determine the critical plane.  

N = ∫
1

C[∆Keq − ∆Kth]
m da

ac

ai

 (38) 

Kmixed,eq =
1

B
√(k1)

2 + (
k2
s
)
2

+ A(kH)2 (39) 

Another critical model that utilizes a damage 

parameter as expressed in Equation (40) to identify 

critical planes characterized by maximum shear strain 

and high displacement in the normal strain path was 

introduced by Shang and Sun [87]. The study illustrated 

a significant correlation between the proposed 
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parameter and the multiaxial fatigue life of materials, 

especially under low-cycle loading conditions. 

(εn
∗ +

veff(2 − veff)

(1 + veff)
2

∆γmax
2

2

)

1
2⁄

=
σf
′

E
(2Nf)

b + εf
′(2Nf)

c 

(40) 

Li and Sun [88] as well as Li and Zhang [89], 

introduced a straightforward critical plane approach for 

evaluating the fatigue life of metallic materials 

subjected to proportional and non-proportional loading 

conditions, as outlined in Equation (41). In this model, 

the maximum shear strain range (∆γmax) and normal 

stress (σn,max); and normal strain range (∆εn) are 

specified on the maximum strain range plane. 

∆εeq
∗

2
=
∆γmax
2

+ (
σn,max
σy

+ 1)
∆εn
2

= [
σf
′

E
(2Nf)

b

+ εf
′(2Nf)

c] (
σf
′

σy
(2Nf)

b + 1) 

(41) 

Two distinct forms of the generalized strain energy 

damage parameters that are associated with the 

maximum fatigue damage plane as outlined in Equation 

(42) were proposed by Ince and Glinka [30]. 

Additionally, they expressed the generalized amplitude 

strain energy damage parameter as depicted in Equation 

(43). 

Wgen
∗ = (τmax

∆γe

2
+
∆τ

2

∆γp

2
+ σn,max

∆εn
e

2

+
∆σn
2

εn
p

2
)
max

= f(Nf) 

(42) 

∆εgen
∗

2
= (

τmax
∆τ 2⁄

∆γe

2
+
∆γp

2
+
σn,max
∆σn 2⁄

∆εn
e

2

+
∆εn

p

2
)
max

= f(2Nf) 

(43) 

Using the critical plane approach as the basis, a high-

cycle multiaxial fatigue criterion was presented by 

Carpinteri-Spagnoli [90]. While incorporating the 

material’s fatigue properties through the angle of 

rotation, the orientation of the critical plane aligns with 

the average direction of the principal stress axis. 

Estimating multiaxial fatigue strength involves 

computing an equivalent stress amplitude on the critical 

plane. Furthermore, the model's formulation relies on 

the ratio between the fatigue limit under fully reversed 

shear stress and that under fully reversed normal stress. 

This approach is versatile and thus is suitable for metals 

exhibiting fatigue behaviour ranging from mild to 

tough. 

Anes et al. [91] proposed a Stress Scale Factor, SSF 

polynomial function that is linked to the Stress 

Amplitude Ratio, SAR between shear and normal 

components. The function proposed is based on the 

tension-torsion history, which combines the normal 

stress and the shear stress amplitudes applied on the 

cross-section of the specimen. Demonstrated success in 

multiaxial fatigue life prediction has been observed 

under both variable amplitude loading [92] and constant 

amplitude loading [93]. Its versatility extends to 

different loading scenarios, encompassing both constant 

[94, 95] and variable amplitude loading [96]. 

Applying the critical plane approach involves 

assessing damage on the plane where it is maximized, 

typically by employing a constant SSF (Stress Scale 

Factor) value corresponding to the material in question. 

In cases involving brittle materials, Goodman’s model 

coupled with the maximum principal stress proves to be 

more suitable. In the realm of uniaxial fatigue 

modelling, structures' fatigue life is commonly 

predicted by accounting for non-zero mean stress under 

combined thermal acoustic loadings [97]. When metal 

structures face such loading conditions, they encounter 

multiaxial fatigue issues, thus, complicating the 

cumulative assessment by introducing significant errors 

in the outcome of the uniaxial model [98].  The critical 

plane model provides a physical explanation of the 

multiaxial fatigue damage mechanism, by allowing for 

fatigue life prediction while accounting for the 

influences of mean stress.   

Furthermore, Ge et al. [99] introduced a novel 

critical plane model that predicts metallic structures' 

fatigue life under combined thermal and acoustic 

loading. In order to accommodate induced mean 

stresses resulting from temperature loading, they further 

proposed a new model that relies on shear strain. 

Experimental data from literature and tests conducted 

on four different materials under strain paths, with zero 
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and non-zero mean stress, were used to validate the 

model, and the results of the model were in good 

agreement with those obtained experimentally. When 

the model was applied to predicting the fatigue life of 

metal structures subjected to thermal-acoustic loading, 

and the results obtained were compared with the 

uniaxial Goodman model, the proposed model appeared 

to be conservative, as it significantly reduces the fatigue 

life due to thermal loading. 

 

4.2. Fatigue analysis based on enclosed surface 

model 

Fatigue analysis using the Enclosed Surface Model 

is also another valuable method for predicting material 

fatigue life under cyclic loading. By examining the 

stress distribution enclosed by the hysteresis loop on the 

stress-strain curve, this model offers insights into the 

material's response to cyclic loading and potential 

fatigue failure. The technique provides a visual 

representation of stress-strain behaviour and captures 

energy dissipation over loading cycles, thus, aiding in 

the understanding of fatigue resistance and durability of 

components. This method is beneficial when assessing 

materials exposed to varying stress levels and mean 

stresses, as the method offers a systematic approach for 

predicting fatigue life, and identifying critical areas 

prone to fatigue damage. 

Mamiya and Goncalves [100] introduced a model 

for determining the multiaxial high-cycle fatigue 

endurance criterion under sinusoidal iso-frequency 

loading, encompassing both in-phase and out-of-phase 

conditions. Their model relies on the principle of the 

minimum circumscribed ellipse within Ilyushin’s 

deviatoric space, as depicted in Equation (44). The 

results obtained from this study were compared with 

other models and it was discovered that the model is 

conservative in the prediction of the useful life of 

components when mean stress is used. 

∑ai
2

5

i=1

+ kσp max ≤ δ (44) 

By employing the prismatic hulls along the principal 

axis directions, the enclosing path method was 

introduced by Leila and Emmanuel [101], as outlined in 

Equation (45). The technique captures the equivalent 

stress parameter for various loads that lead to the same 

stress parameter value. 

√J2,a = √R1
2 + R2

2 + R3
2 + R4

2 + R5
2  (45) 

The maximum rectangular hull method was 

employed by Araujo and Dantas [102] to describe the 

equivalent shear stress amplitude as detailed in 

Equations (46) and (47). This method entails 

maximizing the size of a rectangle by fitting it onto a 

complex loading path. Through this approach, both 

proportional and non-proportional loading can be 

discerned, thus, leading to improved predictions as 

compared to the minimum rectangular hull method 

when both sets of data were compared with 

experimental results. 

τa
max = max{τa(∅, θ)}  (46) 

where,  

τa = max√a1
2(φ) + a2

2(φ)  (47) 

In another study, Mamiya and Castro [103] 

presented a fatigue life estimation model that operates 

on a piecewise rule. This model incorporates two 

surfaces: the first one combines the deviatoric stress 

amplitude with the maximum hydrostatic stress, 

following an exponential function outlined in Equation 

(48), while the second surface only uses the deviatoric 

stress amplitude, as described in Equation (49) when 

estimating fatigue life. Conversely, in situations with 

low magnitudes of hydrostatic stress, only the second 

surface that considers the deviatoric stress amplitude is 

used for the estimation. While this model's performance 

aligns with that of other models proposed in the study, 

it shows superior performance, particularly in scenarios 

involving mean stress. 

τa + σH max = αNf
β
  if σH max ≥ α(

τa
γ
)

β
δ
⁄

− τa (48) 

τa = γNf
δ (49) 

An enclosed surface model that incorporates the 

modified Wang-Brown rainflow method was 

introduced by Meggiolaro and de Castro [33, 104]. This 
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model aimed to address the discrepancies observed in 

previous enclosed surface methods. Building upon the 

minimum hull method, their approach considered 

portions of the component with more than one cycle and 

treated them separately to avoid information loss. Prior 

methods often failed to account for the actual loading 

path, as they focused solely on convex hulls, and this 

potentially led to underestimated damage. 

The limitations associated with the original Wang-

Brown model were evident when the model was used to 

handle load histories with multiple cycles that are 

counted by the rainflow methods before the application 

of the moment of inertia. To rectify this, Meggiolaro 

and de Castro proposed two enhancements: modifying 

the counting starting point to refine the algorithm's 

implementation and formulating a 5-dimensional (5-D) 

Euclidean stress space using the deviatoric stress tensor. 

Additionally, Marsh et al. [105] conducted a review of 

the residual data point post-processing technique, which 

tackles the constraints of traditional rainflow counting 

methods when confronted with gradual but continuous 

changes in mean stress. 

 

4.3. Fatigue analysis based on integral type 

models 

Fatigue analysis using Integral Type Models is an 

advanced method for predicting material fatigue life 

under cyclic loading. By integrating the stress history of 

the material over time, these models provide a detailed 

understanding of fatigue behaviour, considering 

cumulative stress effects and enabling accurate 

predictions of component life. The models assess how 

different stress parameters impact fatigue performance 

by analyzing stress variations over time. Integral-type 

models capture transient material behaviour under 

cyclic loading, thus, offering insights into fatigue 

damage accumulation and informing decisions on 

design optimization and maintenance practices for 

enhanced durability of components. By combining 

experimental data, mathematical formulations, and 

simulations, these models identify critical stress states, 

thus, facilitating effective mitigation strategies that help 

to extend component lifespan.  

An integral type fatigue criterion that integrates all 

its components across all planes at the point of interest 

was introduced by Papadopoulos [106]. Additionally, 

the model was devised such that it incorporates an extra 

integration of resolved shear stress over the shear plane, 

as outlined in Equations (50) and (51). Although this 

model is effective for hard metals [107], its 

computational demands are high, thus, limiting its 

practical application in commercial fatigue solvers [21]. 

√〈Ta
2〉 + ασh,max ≤ β (50) 

√〈Ta
2〉

= √5√
1

8π2
∫ ∫ ∫ (Ta(φ, θ, x))

2
dx sin θ dθdφ

2π

x=0

π

θ=0

2π

θ=0

 

(51
) 

In a research conducted by Lasserre and Palin-Luc 

[108], they introduced an energy density model rooted 

in the idea of volumetric strain energy density 

distribution around the critical point linked to fatigue 

failure. The prediction of the model, depicted in 

Equation (52), exhibited good agreement with 

experimental data obtained from both uniaxial and 

multiaxial tests conducted on smooth cylinder 

specimens. 

ωa
D(Ci, load)

=
1

V∗(Ci)
∫∫∫[

V∗(Ci)

Wa(x, y, z, load)]

− Wa
∗(Ci,load)]dv  

(52) 

The damaged part of the volumetric density model 

was improved by Palin-Luc and Banvillet [109] to 

address the deficiency related to associated with the 

fully reversed sinusoidal loading in the original model 

[108]. The model was reformulated by Saintier and 

Palin-luc [110] as expressed in Equation (53). This 

reformulation also enhanced the criterion for 

incremental fatigue life prediction under both 

proportional multiaxial and non-proportional 

multiaxial, variable amplitude loadings. Within the 

experimental cases, the proposed model gave an 

accurate fatigue life estimate. However, a thorough 

study with different materials was suggested in order to 

further give credence to the model.  

Wgeqdam(M) = 〈Wgeq(M) −∑Pl(M)αM,1Wg
∗

6

i=1

〉 (53) 
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The fatigue life estimation criterion presented by 

Zenner and Simburger [111] incorporates an integral 

type methodology and shear stress intensity, as depicted 

in Equation (54). Although this model provided 

accurate estimations for complex periodic loadings, it 

proved unsuitable for the low-cycle fatigue regime. This 

limitation arises because the specification of strain-

based parameters is necessary to address plastic 

deformation, rather than stress quantities [111]. 

σequ,α = {
15

8π
∫ ∫ [ατγφα

2 (mτγφm
2 + 1)

2π

φ=0

π

γ=0

+ bσγφα
2 (nσγφm

+ 1)] sin γdγdφ}

1
2⁄

 

(54) 

Two criteria that focus on the influence of shear 

stress in relation to normal stress were introduced by 

Papuga and Ruzicka [85]. These criteria utilize a similar 

damage parameter, and they both integrate the fatigue 

parameter over all planes, as expressed in Equations 

(55) and (56). The objective of the model was to assess 

the efficiency of two approaches: integrating the load 

effect versus minimizing it. Ultimately, both methods 

yielded very similar results. 

√
1

4
∫φ∫ϑ [a1 ∙ Ca

2 + b1 ∙ (Na +
f−1
t−1

Nm)] sin ϑdϑdφ−1

≤ f 

(55) 

where,  

a1= 
5

2
k2,   bI = f−1(3 − k

2) (56) 

 

4.4. Fatigue assessment using material structure 

models 

Fatigue assessment using Material Structure Models 

is an important approach used for predicting material 

fatigue performance by analyzing the inherent structural 

properties influencing fatigue behaviour. These models 

consider the microstructural aspects like grain 

boundaries, crystallographic orientation, and defects to 

ascertain how these features impact fatigue resistance 

and failure susceptibility. By understanding 

deformation mechanisms and crack initiation paths, 

engineers can optimize material processing, 

composition, and treatments to enhance fatigue life. 

Material Structure Models offer precise predictions of 

fatigue crack growth, considering the material's internal 

characteristics to tailor design solutions, improve 

fatigue properties, and advance engineering 

applications for enhanced durability. The use of this 

methodology allows for a comprehensive evaluation of 

material behaviour under varying loading conditions, by 

providing insights into fatigue damage mechanisms and 

critical regions susceptible to crack formation in 

components. 

A multi-scale damage criterion designed to predict 

the initiation cracks as expressed in Equations (57) and 

(8) was proposed by Luo and Chattopadhyay [112]. 

This approach employs optimization theory to 

determine the local damage state before progressing to 

the grain level. It also allows for the assessment of 

damage within a meso-representative volume element 

(RVE) comprising multiple grains. Experimental results 

at a structural hotspot align with the predicted failure 

outcomes of the RVE. Additionally, the criterion 

accommodates potential directions of crack growth. 

However, due to its complexity and strong reliance on 

grain structure, this method is less suitable for designs 

where the component's life is represented by its average 

performance and behaviour. 

dD(α) = (
σmr
σo

− 1)
m′

(
σn
(α)

σf
+ 1)dYα

′
 (57) 

dY(α
′) = δ′σn

(α′)
(dεp)α

′
+
1 − δ′

2
σs
(α′)

(dγp)(α
′) (58) 

 

4.5. Stress invariant-based fatigue assessment 

models 

Stress Invariant-Based Fatigue Assessment Models 

are a robust methodology for predicting material fatigue 

life under cyclic loading conditions by focusing on 

stress invariants that remain constant during 

deformation, as this approach provides a stable basis for 

the fatigue assessment. Also, these models enable a 

comprehensive understanding of material response to 

cyclic loading, through the identification of potential 

fatigue failure mechanisms and critical stress areas. By 
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considering multiaxial stress states and interactions, the 

models offer accurate fatigue behaviour analysis as they 

capture the influence of stress states on material 

deformation and damage accumulation, by 

incorporating normal and shear stresses while 

enhancing the predictive accuracy. 

A customized model (void crack nucleation) suitable 

for ductile metals containing second phases was 

presented by Horstemeyer and Gokhale [113], as 

outlined in Equation (59). This model leverages factors 

such as the material’s fracture toughness, the second 

phase volume fraction of the material, the length scale 

parameter, the state of stresses and the level of strain. 

Following this, Lugo and Jordon [114] proposed 

assessing the model's effectiveness through an acoustic 

emission-based method. 

ϵ(t) = Ccoeffexp(
ε(t)d

1
2⁄

KICf
1
3⁄
{a′ [

4

27
+
J3
2

J2
3] + b

′
J3

J2
3
2⁄

+ C′ ‖
I1

√J2
‖}) 

(59) 

In another study, Vu and Halm [115] proposed a 

stress invariant-based fatigue life estimation criterion 

that introduces a quantity to account for shear stress and 

phase shift effects, as illustrated in Equations (60) – 

(62). The model exhibited strong performance within 

the evaluated experimental data set, thus, prompting 

recommendations for more extensive studies to further 

validate its reliability. 

f =  √γ1J2
′ (t)2 + γ2J2,mean

2 + γ3If(I1,a, I1,m) ≤ β (60) 

For low-strength metals, 

If(I1,a, I1,m) = I1,a + I1,m (61) 

 

For high-strength metals, 

If(I1,a, I1,m) = I1,a +
f−1
t−1

I1,m (62) 

 

4.6. Statistical approach for fatigue assessment 

The Statistical Approach for Fatigue Assessment 

utilizes statistical analysis techniques to predict material 

fatigue life under cyclic loading by analyzing data on 

material properties, loading conditions, and fatigue test 

results to develop models for estimating the likelihood 

of fatigue failure. This approach considers factors like 

material heterogeneity and loading variability to 

provide a realistic estimation of component life. The 

technique employs probabilistic modelling and 

sensitivity analyses to identify influential factors 

impacting fatigue life, thus, enabling engineers to 

optimize designs and maintenance strategies. By 

addressing uncertainty and variability, this method 

enhances reliability in fatigue life predictions, as it 

offers valuable insights for decision-making, design 

optimization, and improving the durability and 

performance of engineering components in the long 

term. 

Leveraging the Weibull statistical framework for 

assessing stress-life relationships in a probabilistic 

manner, Pinto and De Jesus [116] introduced a model 

that is based on the Weibull regression. This model 

gives an analytical probabilistic representation of the 

entire strain-life field, thus, providing quantile curves 

for high and low regions of the fatigue. Unlike 

conventional approaches, this model directly manages 

total strain without requiring the segregation of elastic 

and plastic strain constituents. This feature sets the 

model apart, allowing it to handle runouts and support 

probabilistic forecasts of lifetime through damage 

accumulation techniques [2]. 

 

4.7. Plasticity-based models for fatigue 

assessment  

Plasticity-Based Models for Fatigue Assessment are 

advanced tools that predict how materials respond to 

cyclic loading by considering plastic deformation 

effects. These models focus on the material's inelastic 

behaviour, including plastic strains and cyclic 

hardening, to understand fatigue damage mechanisms 

accurately. By analyzing the interaction between 

plasticity and stress states, the Plasticity-Based Models 

provide insights into fatigue crack initiation and growth, 

thus, enhancing the prediction of failure. The model 

enables engineers to evaluate material fatigue resistance 
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effectively and optimize design parameters to improve 

durability. By exploring the relationship between plastic 

deformation and fatigue damage, these models offer a 

comprehensive understanding of material fatigue 

behaviour, thus, aiding in the development of strategies 

to enhance component performance and prevent 

premature failure. The use of plasticity-based models 

contributes to advancing fatigue assessment techniques 

and optimizing the fatigue resistance of engineering 

structures. 

A model capable of assessing fatigue life under 

multiaxial loading conditions as depicted in Equation 

(63) was devised by Emuakpor and George [117]. In 

their model, the nonlinear plastic stress-strain 

relationships were integrated within distortion theory 

during cyclic loading. Their approach employs a 

criterion founded on the concept that the quantity of 

physical damage culminating in failure is equivalent to 

the accumulated strain energy experienced during a 

monotonic loading, in addition to the strain energy 

experienced during fatigue failure. 

σE =
σC

2
ln (∑ e

2σP
σC⁄3

p=1 )  (63) 

Based on extensive experimental data, Chaussumier 

and Mabru [118] presented a model for predicting 

fatigue life. Their approach integrates factors like multi-

site crack initiation, coalescence among neighbouring 

cracks, and different stages of short-crack growth, and 

long-crack propagation. The model was crafted through 

experimental investigations on surfaces prepared with 

topographical pickling, enabling accurate identification 

and analysis of pit dimensions. 

Meanwhile, Khandewal and El-Tawil [119] 

introduced a mechanical-based damage model tailored 

for simulating ductile fracture behaviour in structural 

steel. This model operates within a plasticity framework 

based on the principles of principal effective stress and 

equivalent strain, as outlined in Equations (64)-(66). 

Implementation of this model in finite element software 

necessitates calibration of model parameters, which are 

inherently dependent on mesh characteristics. 

Consequently, recalibration is required when 

employing different materials or changing the mesh 

sizes. 

 

α̇d = a0T1(α
P)α̇P + a1TT1(α

P)α̇P + a2exp(a3α
P)T2(α

P)α̇P  (64) 

{
 
 

 
 T1(α

P, εn, ∆ε) = 0                                       if α
P < εn

T1(α
P, εn, ∆ε) =

(αP − εn)
2

∆ε2
[3 −

2(αP − εn)

∆ε
]        if εn < α

P < εn + ∆ε

and T1(α
P, εn, ∆ε) = 1                                         if αP ≥ εn + ∆ε

 (65) 

{
 
 

 
 T2(α

P, εc, ∆ε) = 0                                        if αP < εc

T2(α
P, εc, ∆ε) =

(αP − εc)
2

∆ε2
[3 −

2(αP − εc)

∆ε
]          if εc < αP < εc + ∆ε

and T2(α
P, εn, ∆ε) = 1                                         if α

P ≥ εn + ∆ε

 (66) 
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4.8. Fatigue assessment utilizing optimization 

algorithms 

Fatigue Assessment Utilizing Optimization 

Algorithms is an advanced methodology that optimizes 

design parameters, material properties, and loading 

conditions to predict fatigue life accurately by 

incorporating optimization techniques like genetic 

algorithms and simulated annealing. The approach 

iteratively refines parameters to enhance component 

durability and reliability, efficiently minimizing fatigue 

damage and extending the operational lifespan. By 

exploring various design possibilities and considering 

trade-offs, engineers can navigate complex design 

spaces, increase fatigue performance, and address 

uncertainties, leading to robust predictions of fatigue 

life and failure probabilities. With the integration of 

optimization algorithms, it is possible to obtain tailored 

solutions for specific engineering applications, thus, 

enabling engineers to optimize performance, reduce 

premature failure risks, and enhance component 

longevity through a systematic and data-driven 

approach to fatigue assessment. 

The methodology proposed by Bukkapantnam and 

Sadananda [120], offers a systematic approach to 

analysing the dynamics of crack growth in materials 

under alternating service conditions without extensive 

experimentations. Their approach is rooted in a unified 

framework that accounts for various factors such as load 

ratio effects, microscopic cracks, dislocation shielding, 

under-loading, overloading, and surface cracks. By 

integrating these observations, they derived the 

structural foundation of the model and utilized a genetic 

algorithm (GA) to parameterize it. The GA facilitated 

the reconciliation of complex, yet unknown, physical 

relationships with empirical data, making the model 

predictive and analytically tractable. This method offers 

advantages over purely empirical approaches like 

neural networks, as it incorporates physically motivated 

mathematical structures. When applied, the fatigue 

crack growth model derived from this framework 

exhibited approximately a 12% error rate in predicting 

crack growth rates. Nevertheless, this framework shows 

promise in reducing the necessity for extensive 

experimentation in fatigue crack growth analysis, thus, 

offering a promising direction for future research [121]. 

In addition, Liu [121] introduced a computational 

procedure centred on simulation to forecast multiaxial 

fatigue life. This approach merges the “Monte Carlo 

simulation technique with stochastic process theory and 

a response surface method”. By doing so, it 

accommodates the randomness inherent in material 

properties, applied loading conditions, and geometric 

factors. The methodology operates under the 

assumption that failure occurs either when accumulated 

damage surpasses a predefined threshold or when a 

crack attains a critical size. It evaluates time-dependent 

failure probabilities and computes probabilistic life 

distributions using Monte Carlo simulation. By 

considering multiple sources of variation, the method 

yields empirical formulas for the damage accumulation 

process through the combination of surface response 

methods and experimental design. Results obtained 

from field data demonstrated excellent agreement with 

numerically predicted outcomes. 

A comparative study on fatigue life prediction for 

composite materials, employing a Genetic Algorithm 

(GA) in conjunction with conventional methods was 

conducted by Vassilopoulos and Georgopoulos [122]. 

Their findings demonstrated that the GA approach 

yielded more accurate fatigue life results compared to 

traditional methods. Unlike the conventional 

techniques, the GA model does not rely on specific 

assumptions about the data distribution; instead, it 

allows the data to assume a particular statistical 

distribution, with stress cycle curves following a power 

curve equation. 

One notable advantage of the GA model is its 

independence from material type. By correlating input 

parameters with output results, the GA model 

establishes a comprehensive relationship applicable to 

various materials, given the availability of requisite 

data. Based on these findings, Vassilopoulos and 

Georgopoulos suggested that future research in GA-

based fatigue modelling should explore more intricate 

genetic programming configurations. Additionally, they 

suggested integrating multiple input variables like off-

axis angle, maximum stress, stress amplitude, stress 

ratio, and the associated number of cycles to failure for 

each dataset. These improvements have the potential to 

enhance the predictive precision and versatility of GA-

based fatigue models. 
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A material model to describe the elastoplastic 

behaviour of materials under cyclic loading was 

proposed by Franulovic and Basan [123]. Due to the 

highly non-linear nature of low cycle fatigue behaviour 

described by the constitutive model, identifying 

parameters for the model requires complex numerical 

procedures, like Genetic Algorithms (GA), which 

allows for the use of a stochastic search methods for 

approximating solutions to complex problems. Material 

parameters obtained through calculation are validated 

by comparing their response (from numerical solutions) 

with experimental data. The finite element method is 

commonly used to simulate the material's response in 

GA parameter identification, thus, the method proves to 

be an excellent choice for providing fast and reliably 

convergent results with suitable genetic operators if the 

GA calculation procedure is used. 

A procedure for structural optimization which 

merges geometrical modelling, optimization and 

structural analysis into a unified automated computer-

aided design framework was introduced by 

Krishnapillai and Jones [124]. The demonstration of the 

procedure using fatigue-based optimization technique 

in conjunction with GA for lightweight structure 

showed that the procedure is a robust methodology 

which can be applied to structures with multiple 

optimum peaks and complex configurations. 

In an attempt to quantify the accumulation of 

damage in materials from their initial to the final stage 

when subjected to arbitrary multiaxial loading 

conditions, a “continuum mechanics-based endurance 

function” was proposed by Brighenti and Carpinteri 

[13]. To effectively estimate the values of the model's 

multiple parameters, particularly in assessing the impact 

of intricate stress histories on fatigue life, they utilized 

genetic algorithms for numerical evaluation. Contrary 

to the traditional methods, genetic algorithms (GAs) 

provide benefits in tackling problems marked by several 

minima and non-convexity, while circumventing 

numerical instabilities and the potential oversight of the 

global optimum. GAs function through the use of 

straightforward principles such as random number 

generation, switching, choice, and combination, thus, 

enabling them to address any objective function without 

the need for specific plane or cycle counting algorithms. 

The approach assesses the accrued damage over the 

loading phases, under the assumption that fatigue life 

primarily hinges on crack initiation, and the results from 

the use of the technique showed satisfactory alignment 

with experimental results especially when employing 

the sophisticated endurance function. 

The endurance function model was examined by 

Kamal et al [125], and they proposed that the model can 

be simplified if the number of parameters calibrated is 

reduced. By doing this, they developed a methodology 

that utilizes the stress results from finite element 

analysis to estimate fatigue life, thus, offering a 

practical approach for assessing fatigue in structures 

subjected to multiple variable loadings. Roux and 

Lorang [126] introduced a method for defining 

Equivalent Fatigue Load (EFL) from in-service load 

measurements, thereby, facilitating full-scale structural 

tests for experimental validation. They also proposed a 

mathematical method that employs Genetic Algorithms 

(GA) to accurately compute EFL for the entire structure, 

hence, enabling benchwork validation tests and 

optimization of structural geometry during the design 

phase. 

Lotfi and Beiss [127] applied Artificial Neural 

Networks (ANN) to estimate the impacts of different 

powder metallurgical processing/fabricating parameters 

on the endurance limit of powdered steel samples. 

Leveraging preexisting data from published 

experimental studies, they integrated genetic algorithms 

(GA) to refine experimental parameters within practical 

constraints, with the aim of attaining the targeted fatigue 

resistance. This combined approach involving GA 

proved to be efficient and cost-effective, as it helps in 

facilitating the identification of optimal material 

compositions and processing conditions for bolstering 

fatigue durability. 

A stress-based model technique that takes into 

consideration the effect of the value of mean stress on 

constructional materials fatigue strength was introduced 

by Niesłony and Böhm [128]. Their fatigue prediction 

model, paired with the locally devised optimization 

algorithm, guarantees the utmost accuracy in assessing 

fatigue life. Central to their approach is the assumption 

of adjusting fatigue strength amplitudes according to 

two extreme conditions: tensile and compressive, with 

a stress ratio (R) of 1. However, a constraint emerges 

when addressing average stress values under unilateral 

tension (R=0). 
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Inspired by the foraging behaviour of ants, Dorigo et 

al. [129] developed ant-stigmergy optimization 

methods to tackle the complex optimization problems 

associated with independent continuous variables. In an 

attempt to address these complexities, Korosec et al 

[130] introduced the Differential ant-stigmergy 

algorithm (DASA) as a variant of ant-stigmergy 

algorithms.  

A method for computing strain cycle (ε − N) curves 

and how they are scattered was proposed by Klemenc 

and Fajdga [131, 132]. They established five 

parameters, wherein four are Coffin-Manson equations 

pertaining to the scale parameter of the Weibull 

distribution, while the fifth characterizes the shape 

parameter. Employing Differential ant-stigmergy 

algorithm (DASA) and Genetic Algorithms (GA), they 

efficiently estimated these parameters from a small set 

of experimental data points, with GA proving to be 

faster in producing results. 

In general, while optimization algorithms like 

artificial neural networks and genetic algorithms show 

promising potential for fatigue life estimation, there are 

challenges and limitations to consider. One of such 

challenges is the requirement for a large amount of 

quality training data to effectively train the algorithms. 

Obtaining such data can be time-consuming and costly, 

especially for complex loading scenarios and diverse 

materials. Another challenge is the interpretability of 

the results obtained from optimization algorithms. 

These algorithms often work as black boxes, thus, 

making it difficult to understand the underlying 

mechanisms or factors contributing to the fatigue life 

estimations. Additionally, the performance of 

optimization algorithms can be influenced by the 

quality and representation of the input features and the 

complexity of the fatigue phenomena being modelled. 

Thus, careful selection and representation of input 

parameters are crucial to achieve accurate and reliable 

results. Despite these challenges, optimization 

algorithms offer promising avenues for enhancing the 

efficiency and accuracy of fatigue life estimation, and 

further research and development in this area can help 

overcome these limitations. 

 

5. Conclusion 

This review presents a spectrum of fatigue life 

estimation models, ranging from classical approaches 

(stress, strain, and energy-based) to more advanced ones 

(critical plane, enclosed surface, integral type models, 

etc.). It emphasizes that fatigue crack nucleation and 

propagation typically occur on critical planes, making 

the critical plane more accurate for the prediction of 

multiaxial stress/strain states as compared to uniaxial 

fatigue models. The Stress Scale Factor (SSF) approach 

is also discussed as an alternative to critical plane-based 

methods because of its efficiency under both constant 

and variable amplitude loading.  

The Volume Strain Energy (VSE) model is 

highlighted for its capability to predict fatigue crack 

characteristics such as initiation site, orientation, and 

fracture mode. However, it tends to under-predict 

fatigue life for superimposed compressive mean stress. 

The review shows how optimization algorithms 

parameterized using Genetic Algorithms (GA) facilitate 

crack growth identification under cyclic loading 

conditions and reconcile physical relationships with 

empirical observations. Combining conventional 

methods with GA tools for fatigue life estimation yields 

more accurate results than traditional methods, given 

the former's material independence. Finite Element 

(FE) methods employed to simulate material responses 

in GA parameters offer fast and reliable convergence. 

Additionally, GA outperforms the Differential Ant-

Stigmergy Algorithm (DASA) in result generation 

speed. The integration of Artificial Neural Network 

(ANN) models with GA is lauded as a cost-effective and 

powerful optimization tool for selecting optimal 

material compositions and operating conditions to meet 

desired fatigue strength requirements.Despite these 

advancements, the review acknowledges the limitations 

of existing models, thus, emphasizing the need for 

further research to develop a universal model capable of 

reliably and accurately estimating fatigue life across 

various materials and loading conditions. Considering 

the limitations of existing fatigue estimation models, 

future research can focus on several areas to contribute 

to the development of a widely accepted model. First, 

there is a need for further understanding and 

characterization of fatigue behaviour in diverse 

materials and loading conditions. This can be achieved 

through experimental studies, advanced testing 
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techniques, and comprehensive data collection. 

Additionally, the integration of advanced computational 

methods, such as machine learning and data-driven 

approaches, can enhance the accuracy and efficiency of 

fatigue life estimation. Moreover, collaborative efforts 

between researchers, industry experts, and 

standardization organizations can lead to the 

development of standardized guidelines and protocols 

for fatigue assessment that encompass a wide range of 

materials and loading scenarios. By addressing these 

research directions, we can pave the way for the 

development of a more universally applicable model for 

fatigue life estimation. 
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Appendix 

Table A1. List of symbols for the different models and their description. 

Model Symbols Description Model Symbols Description 

Fatigue analysis 

models utilizing 

strain energy-based 

approach 

G Shear modulus Assessment of 

multiaxial fatigue 

using the critical 

plane model 

S,  A and B Material constants 

E Elastic modulus c Fatigue ductility exponent 

c 
Coefficient of fatigue 

ductility exponent 
b Fatigue strength coefficient 

b 
Coefficient of fatigue 

strength 
∆γmax 

Maximum shear strain 

range 

∆τ Shear stress range range ∆γ́ 
Equivalent shear strain 

connection 

∆γ Shear strain range σn,   mean Mean stress 

∆W 
Virtual strain energy 

parameter 
εn
∗  

Normal extrusion strain 

between two turning points 

of γmax 

∆ε1 Principal strain range vp Plastic Poisson ratio 

τn,max 
Maximum shear stress 

(on the plate) 
ve Elastic Poisson ratio 

τf
′ Shear fatigue strength MDPWB 

Wang-Brown Maximum 

damage parameter 

σy 
Shear fatigue strength 

coefficient 
∆εn Nominal strain range 

σn,max 
Maximum nominal 

stress 
∆γmax Maximum shear range 

σf
′ 

Fatigue strength 

coefficient 
t Torsional fatigue 

εf
′ 

Coefficient of fatigue 

ductility 
s 

Mode II and Mode I 

intensity factor ratio 

vp Plastic Poisson ratio n 
Empirical constant between 

points 1 and 2 

Nf Fatigue life N Fatigue life 

cγ 
Coefficient of shear 

fatigue ductility 

exponent 

m 
Mean stress sensitivity 

index 

bγ 
Coefficient of shear 

fatigue exponent 
l, m, n 

Direction cosine of a vector 

normal to the plane 

∆σn Normal stress range L 
Material characteristics 

length 

∆εn Normal strain range D 
Damage on the critical 

plane 

Fatigue analysis 

models using 

equivalent stress 

τ(t) 
Instantaneous shear 

stress 
d Direction cosines 

a, b, k, f, α and β Material constants c Fatigue ductility exponent 

∆τ Shear stress range 𝑏𝑓 Bending fatigue 

σuts Ultimate tensile strength b Fatigue strength coefficient 

σn Nominal stress 
a, b,m A, B, C, k, ac, 
bc, α and β, μ 

Material constants 

σh(t) 
Instantaneous 

hydrostatic stress 
a Crack length 

σh Hydrostatic stress ∆τ Shear stress range 

tA,B 
Shear stress fatigue 

strength 
∅ Phase angle 

∆τoct 
Octahedral von-Misis 

stress range 
τmax Maximum shear stress 

∆τmax 
Maximum shear stress 

range 
τa Shear amplitude 

Fatigue analysis 

models using 

equivalent strain 

S,  A and B Material constants τa Torsional stress 

c 
Fatigue ductility 

exponent 
τa,c 

Shear stress amplitude on 

the critical plane 

b 
Fatigue strength 

coefficient 
τA,   Ref(ρeff) 

Reference shear stress 

amplitude (at a defined limit 

to failure cycle) 

∆γmax 
Maximum shear strain 

range 
σu Material’s tensile strength 
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∆γ́ 
Equivalent shear strain 

connection 
σn,a 

Stress amplitude 

(perpendicular to the critical 

plane) 

σn,   mean Mean stress σn,max Maximum normal stress 

εn
∗  

Normal extrusion strain 

between two turning 

points of γmax 
σn,m 

Mean stress perpendicular 

to the critical plane 

vp Plastic Poisson ratio σm Bending mean stress 

ve Elastic Poisson ratio σm,c 
Mean normal stress (on the 

critical plane) 

MDPWB 
Wang-Brown Maximum 

damage parameter 
σeq Equivalent stress amplitude 

∆εn Nominal strain range σa Bending stress 

∆γmax Maximum shear range σa,c
H  

Hydrostatic stress amplitude 

(on the critical plane) 

Fatigue analysis 

based on enclosed 

surface model 

φ 

Angle locating 

rectangular hull on 

plane 

σa,c 
Normal stress amplitude (on 

the critical plane) 

δ Material parameter ρeff Critical plane stress 

α, β,γ,δ Material parameters εn
∗  

Normal strain exercusion 

(occurring between turning 

points on the critical plane) 

k Fatigue limit ratio Wgen
∗  

Maximum generalized 

strain energy 

τa
max 

Maximum equivalent 

shear stress amplitude 
veff Effective poisson ratio 

τa(∅, θ) 
Equivalent shear stress 

on plane located by  ∅ 

and θ 

Te 
Fully reversed torsion 

fatigue limit  

σp max 
Maximum principal 

stress 
tNf Shear stress at Nf cycles 

R1 − R5 

Stress amplitude in 5D 

Euclidean space in the 

principal directions 

Se 
Fully reversed axial and 

torsion fatigue limit 

Nf Fatigue life Na Maximum normal stress 

a(1−5) 
Deviatoric stress 

amplitude 
kτ(ρeff) 

Wholer’s curve negative 

inverse slope 

√J2,a 
Second invariant stress 

deviator amplitude 
Kmixed,eq 

Equivalent stress intensity 

factor under general mixed 

mode loading 

Fatigue assessment 

using material 

structure models 

 

 

σs
(α′)

 
Shear stress (obtained 

on the slip system (α)) 
k1, k2 and kH Loading related parameters 

σo Endurance limit k′ 
Normal stress sensitivity 

factor 

σn
(α)

 
Normal stress (obtained 

on the slip system (α)) 
f−1 

Fully reversed axial loading 

fatigue limit 

σmr Memory stress fNf Normal stress at Nf cycles 

σf True fracture stress d1 and d2 

Fatigue material properties 

to be experimentally 

determined 

m′and δ′ Material constants ca 
Shear stress on the 

considered plane 

dεp 
Plastic strain increment 

corresponding to σn
(α′)

 
[C] 

Matrix: consisting of  (i) 

variance Vi and (ii) 

covariance Ci,j 

dγp 
Plastic strain increment 

corresponding to σs
(α′)

 
∆σo 

Uniaxial plane fatigue limits 

range 

dY(α
′) 

Plastic strain energy 

increment (obtained on 

slip system(α)) 
∆σn Normal stress range 

dD(α) 
Damage parameter 

increment on slip 

system(α) 
∆εn

p
 Plastic normal strain range 

Stress invariant-

based fatigue 

assessment model 

 

 

ϵ(t) 
Nucleation of void 

nucleation as a function 

of time, t 

∆εn
e  Elastic normal strain range 

ε(t) 
Strain as a function of 

time, t 
∆εgen

∗  
Maximum generalized 

strain amplitude 
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f 

Equivalent stress 

amplitude 
∆γp Plastic strain range 

d Length scale parameter ∆γmax 
Maximum shear strain 

range 

t−1 
Fully reversed torsion 

Fatigue limit 
∆γe Elastic strain range 

KIC 
Critical stress intensity 

factor 
∆Kth Threshold stress factor 

J2
′  

Stress tensor amplitude 

deviator in the 

secondary invariant 

∆KI,th 
Fatigue threshold intensity 

factor 

J2 
Devitoric stress 

invariants 
∆Keq 

Equivalent stress intensity 

factor 

J2,mean 
Mean value of J2

′ (t) as a 

function of time 

Fatigue analysis 

based on integral type 

models 

 

φ and θ Angle locating the plane 

If Function of I1,a and I1,m ϑ and φ 

Euler angles of planes 

(examined in the local 

coordinate system) 

I1 Stress invariant x 
The angle between resolved 

the shear stress and the 

major axis  

I1 

First stress invariant 

(consisting of m – mean 

and a – amplitude) 

a,m, b, n,  
k, a1, b1, α and β 

Material constants  

f−1 
Fully reversed axial and 

bending fatigue limit 
ωa
D 

Strain energy density 

volumetric mean value 

a′, b′ and c′, 
γ1, γ2, γ3,   
Ccoeff and β 

Material constants τγφα 
Alternating shear stress on 

plane γφ 

Plasticity-based 

models for fatigue 

assessment 

 

σP 
Principal stress (at P = 

1, 2, 3) 
τγφm 

Static shear stress on plane 

γφ 

T Stress tri-axiality σγφα 
Alternating normal stress on 

plane γφ 

∆ε Smoothing factor σγφm Normal stress on plane γφ 

σE 
Non-linear equivalent 

stress 
σequ,α Equivalent stress amplitude 

σC 
Cyclic stress material 

parameter 
αM 

Stress/strain Sequence 

duration and stress//strain 

tensors evolution 

εn Nucleation strain Wgeqdam 
Strain work density 

damaging part 

εc Coalescence strain Wgeq 
Equivalent strain work 

density 

αP Plastic internal variable Wg
∗ 

Minimum strain work 

volumetric density required 

to produce irreversible 

damage 

T1 and T2 Threshold function Wa
∗ 

Strain energy volumetric 

density (at a critical point 

Ci) 

a0, a1, a2, a3 Material parameters Wa 
Strain volumetric energy 

density 

α̇d Damage variable V∗(Ci) Volumetric critical point 

 
Ta 

Amplitude of resolved shear 

stress  

t−1 
Fully reversed torsion ftigue 

limit 

Pl Proportionality factor 

Nm Mean normal stress 

Na Maximum normal stress 

f−1 
Fully reversed axial loading 

fatigue limit 

Ca 
Shear stress on the 

considered plane 
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