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Abstract 

This study explores the integration of deep learning and Internet of Things (IoT) technologies to enhance healthcare 

delivery, with a primary focus on improving electrocardiogram (ECG) analysis and real-time patient monitoring 

systems. The research presents the development of two innovative deep learning models based on the MIT-BIH dataset, 

enabling highly accurate ECG analysis. One model is trained for precise R-R peak detection, while the other performs 

effective classification of ECG signals into five distinct disease categories. The study also introduces an integrated 

healthcare system that seamlessly captures patients' real-time physiological data, including ECG, SpO2, and temperature, 

using an ESP32 microcontroller and Raspberry Pi. An IoT infrastructure with Node-RED IBM Platform and Message 

Queuing Telemetry Transport (MQTT) securely transmits the ECG data to the advanced analysis algorithms. The user 

interface displays patients' vital signs, including heart rate, oxygen saturation, and temperature, providing healthcare 

professionals with comprehensive real-time insights. By integrating the deep learning models, which achieve 

approximately 99% accuracy, alongside robust sensor technology and an IoT architecture, this system aims to transform 

healthcare by enabling highly precise ECG analysis and remote patient monitoring. The findings of this study underscore 

the potential of the synergistic convergence of deep learning, sensor technology, and IoT to advance healthcare delivery 

and improve patient outcomes. 
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1. Introduction 

Cardiovascular diseases remain a leading cause of 

mortality worldwide, emphasizing the critical need for 

accurate and efficient electrocardiogram (ECG) 

interpretation [1]. Traditional manual ECG analysis, 

while valuable, is often hindered by inefficiencies, labor-

intensive processes, and susceptibility to human error. To 

address these limitations and enhance patient care, there 

is a growing interest in leveraging advanced technologies 

[2], [3]. 

Recent advancements in artificial intelligence (AI), 

particularly deep learning, have demonstrated remarkable 

potential in medical diagnostics, including ECG analysis 

[4], [5], [6]. Simultaneously, the proliferation of Internet 

of Things (IoT) technologies has enabled unprecedented 
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connectivity and real-time data acquisition in healthcare 

settings [7], [8], [9], [10], [11]. The synergistic integration 

of these technologies offers a unique opportunity to 

revolutionize ECG analysis and patient monitoring. 

Building upon previous research in IoT-based 

healthcare systems, automated ECG analysis [12], [13] 

[5], [14], and the application of deep learning in cardiac 

diagnostics [14], [15]. These studies present a novel 

approach that seamlessly combines cutting-edge sensor 

technologies, embedded systems, and AI-powered 

analytics. Our work distinguishes itself by offering a 

comprehensive healthcare data management pipeline, 

specifically targeting ECG processing and multi-

parameter patient monitoring. 

In contrast to previous studies that have examined 

isolated components of IoT in healthcare [16], [17], our 

research presents a comprehensive framework that 

seamlessly integrates advanced deep learning models for 

ECG analysis within a holistic IoT architecture. While 

other investigations have delved into blockchain 

applications [18], [19], machine learning exploration, and 

real-time screening and monitoring systems in healthcare 

[18], our work distinctively combines efficient data 

transfer with sophisticated processing and interpretation. 

This integrated approach yields actionable insights for 

healthcare professionals, propelling the practical 

implementation of IoT and deep learning in contemporary 

healthcare settings. 

This research aims to address three main goals: 

1. To develop and validate innovative deep 

learning models for ECG analysis, focusing on R-

R peak detection and disease classification. 

2. To create an integrated IoT-based healthcare 

system capable of real-time acquisition and 

analysis of multiple physiological parameters, 

including ECG, SpO2, and temperature. 

3. To evaluate the performance and potential 

clinical impact of the proposed system in real-

world scenarios. 

For training our deep learning models, we utilize the 

comprehensive MIT-BIH dataset [20]. Our IoT 

infrastructure integrates cutting-edge hardware, including 

ESP32 microcontrollers, Raspberry Pi devices, and 

various sensors. We also employ advanced platform and 

software protocols, specifically Node-RED and MQTT, to 

support this infrastructure. 

By addressing critical challenges in ECG 

interpretation and patient monitoring, this study aims to 

significantly impact healthcare delivery. The proposed 

system has the potential to enhance diagnostic accuracy, 

enable early detection of cardiac abnormalities, and 

facilitate personalized and timely interventions [21], [22], 

[20], [23]. 

The remainder of the paper is organized as follows. 

Section 2 describes the system setup and presents the 

research in general. Section 3 details the methods and 

materials used in this study, including the creation of the 

deep learning models, dataset analysis, model training, 

and the development of the real-time IoT system. Section 

4 concludes the study with a summary of the key findings.  

 

2. System Architecture Setup 

The proposed healthcare monitoring system presents 

an innovative platform that seamlessly integrates multiple 

components to provide comprehensive patient care. 

Figure 1 illustrates the system's architecture, which 

encompasses data acquisition, processing, analysis, and 

visualization. 
 

2.1. Deep learning models 

Our system is built around two advanced deep learning 

models: 

1. ECG Peak Detection Model: This model accurately 

identifies peak values within ECG signals, crucial 

for evaluating cardiac health and detecting 

irregularities. 

2. ECG Classification Model: This model categorizes 

ECG signals into five distinct disease categories, 

aiding in the identification of potential cardiac 

issues. 
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Figure 1. System setup presentation. 

 

Both models are trained on extensive datasets and 

saved in TensorFlow.js format and implemented for 

seamless integration into the Node-RED environment, 

enabling real-time analysis. 

 

2.2. Data acquisition 

The system utilizes a multi-sensor approach to collect 

comprehensive patient health data: 

- ECG Sensor (AD8232): Connected to an ESP32 

microcontroller for real-time ECG data acquisition. 

- SpO2 Sensor (MAX30100A) and temperature 

sensor (DHT11): Interfaced with a Raspberry Pi to 

continuously monitor oxygen saturation levels and 

body temperature. 

 

2.3. Data transmission and processing 

All collected data is transmitted to a cloud server using 

the MQTT protocol, ensuring efficient and reliable data 

transfer. The data is then processed within Node-RED 

flows for analysis and visualization. This approach allows 

for scalable and flexible data handling while maintaining 

the integrity of sensitive health information throughout 

the transmission process. 

2.4. Data analysis and visualization 

Within the Node-RED environment, the ECG data 

undergoes two parallel processes: 

1. Peak Detection: The first node function applies the 

peak detection model to identify ECG signal peaks, 

essential for accurate heart rate calculation. 

2. Disease Classification: The second node function 

utilizes the classification model to categorize ECG 

data into specific disease classes, crucial for 

diagnostic purposes. 

The results from peak detection, disease classification, 

SpO2, and temperature data are aggregated to compute 

vital health metrics, including oxygen saturation, 

temperature, and heart rate. The system also presents 

disease classification information alongside the ECG 

signal with identified peaks. 

2.5. User interface and remote access 

Patient health information and diagnostics are 

displayed through: 

1. An on-site Human Machine Interface (HMI) or LCD 

display connected to the Raspberry Pi, allowing 

local medical practitioners to monitor patient health 

in real-time. 
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2. Secure remote access from various devices 

(computers, mobile phones, or tablets), enabling 

off-site medical professionals to monitor patient 

health by logging in through authenticated 

accounts. 

This dual-access approach ensures timely medical 

intervention, when necessary, while also maintaining the 

confidentiality and integrity of patient data. 

 

2.6. System integration and workflow 

The entire system operates as a cohesive unit, with data 

flowing seamlessly from sensors to analysis models and 

finally to visualization interfaces. This integrated 

approach allows for: 

- Real-time monitoring of critical health parameters 

- Quick and accurate disease diagnosis 

- Efficient communication between local and remote 

healthcare providers 

By leveraging advanced IoT protocols and cloud 

computing, our system ensures that vital health data is 

transmitted, processed, and accessed securely and 

efficiently. While the focus of this research is not on 

specific data security mechanisms, the architecture 

inherently supports the implementation of robust security 

measures to protect sensitive patient information 

throughout the data lifecycle. 

This comprehensive system setup forms the 

foundation for our subsequent experimental analysis and 

evaluation, demonstrating the potential of integrated IoT 

and AI technologies in revolutionizing healthcare 

monitoring and diagnosis. 

 

3. Materials and Methods 

This section describes the three layers of the proposed 

system that have been proposed and adopted: 

− AI deep learning models. 

− System hardware and software implementation: 

hosting data and the controller. 

− IoT: Transferring data between the different parts of 

the system by means of WiFi, MQTT, cloud server, 

and Node-RED. 

3.1. Deep learning models 

3.1.1. ECG signal 

ECG interpretation stands at the heart of 

cardiovascular diagnostics, providing a detailed snapshot 

of the heart’s electrical activity. The distinctive wave 

forms captured on the ECG graph, namely the P, Q, R, S, 

and T waves, illustrated in Figure 2, hold pivotal 

information about the cardiac cycle. The P-wave 

represents atrial depolarization, signifying the contraction 

of the atria as they pump blood into the ventricles. 

Following this, the QRS complex reflects ventricular 

depolarization, marking the initiation of the main 

pumping chambers’ contraction. The ensuing S-wave 

denotes the completion of ventricular depolarization. 

Subsequently, the T-wave represents ventricular 

depolarization, illustrating the recovery phase as the heart 

prepares for the next cycle [20], [24]. 

As explained in Figure 3, the intricate analysis of these 

waves, their amplitudes, durations, and sequential 

patterns, enables clinicians to discern abnormalities, 

identify arrhythmias, and assess overall cardiac health. In 

the pursuit of more efficient and accurate ECG analysis, 

this study integrates new techniques, including deep 

learning, to augment the interpretation process, 

addressing the inefficiencies and challenges inherent in 

traditional manual approaches. 

 

 

Figure 2. ECG PQRST wave. 
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Figure 3. Traditional versus AI ECG analysis. 

 

3.1.2. Deep learning model for ECG peak detection 

This part focuses on a model tailored to pinpoint and 

localize the peak amplitude values within an ECG signal 

waveform. The core goal of this model is to precisely 

identify the maximum amplitude points or peak values 

found in the ECG wave, as these peaks carry crucial 

diagnostic importance for evaluating cardiac performance 

and spotting potential irregularities. 

 

3.1.2.1 MIT-BIH arrhythmia database analysis 

The foundation of any successful machine learning 

endeavor lies in the quality and appropriateness of the 

dataset. The MIT-BIH Arrhythmia database serves as the 

cornerstone of our model development, offering a rich and 

diverse range of ECG recordings, each meticulously 

annotated to highlight various cardiac events. This dataset 

is pivotal in our pursuit to develop a model capable of 

peak detection in ECG signals, enabling the analysis of 

critical parameters such as heart rate, QRS complexes, 

and more. 

To better understand the dataset, Figure 4 illustrates 

the distribution of peak counts per sample, providing 

insight into the variability and range of ECG signal 

characteristics captured within the database. Additionally, 

Figure 5 presents a visualization of ECG signals with 

detected peaks for both the training and test sets, 

showcasing how the model interprets and processes the 

raw data. These visual analyses underscore the dataset's 

breadth and depth, offering a solid foundation for training 

a model that can aid in the automatic detection of 

arrhythmias. 

 

Figure 4. Dataset distribution of the peak counts.   

 

 

Figure 5. Dataset presentation. 

 

3.1.2.2 Model architecture 

Accurate peak detection in ECG signals is 

fundamental for various cardiac analyses. Peaks represent 

distinctive features of the ECG waveform, including the 

R-peak. Identifying these peaks enables us to calculate 

heart rate, evaluate QRS complex duration, and discern 

abnormalities, ultimately aiding in clinical diagnosis. Our 

peak detection model is inspired by convolutional and 

upsampling neural network architectures. The model's 

structure is tailored to capture the salient features of the 

ECG signal and discern its peaks. It consists of several 

key layers: 

1. Input Layer: The model receives ECG signal 

segments as inputs, represented as sequences of 

voltage values. Let x∈ℝn be the input vector, 

where n is the number of samples in the ECG 

segment. 

2. Convolutional Layers: A series of convolutional 

layers with increasing abstraction levels aim to 
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capture the underlying patterns in the ECG signal. 

These layers help the model learn relevant 

features associated with peaks. For the ith 

convolutional layer: 

 𝑦𝑖 = 𝑓(𝑤𝑖 ∗ 𝑥𝑖 + 𝑏𝑖) (1) 

 Where 𝑦𝑖 is the output, 𝑤𝑖 are the learnable 

filters, ∗ denotes the convolution operation, 𝑏𝑖 is the 

bias term, and 𝑓 is an activation function typically 

the Rectified Linear Unit (ReLU) function defined 

by (2). 

 𝑓(𝑧) = max(0, 𝑧) (2) 

3. Max Pooling Layers: These layers downsample 

the input, focusing on retaining the most essential 

information while reducing computational 

complexity. For a max pooling operation with a 

window size of k we can write the formula given 

in (3). 

 𝑝𝑖 = max(𝑦𝑖[𝑗: 𝑗 + 𝐾]) for 𝑗 = 1, 𝑘 + 1, 2𝑘 + 1, … (3) 

Where 𝑝𝑖 is the pooled output and 𝑦𝑖 is the input 

from the previous layer. 

4. Upsampling Layers: Following the convolutional 

layers, the model employs upsampling layers to 

reconstruct the original signal dimensions while 

preserving learned features. For nearest neighbor 

upsampling by a factor of s given by (4). 

 𝑢𝑖[𝑠𝑗: 𝑠𝑗+1] = 𝑝𝑖[𝑗] for all 𝑗 (4) 

Where 𝑢𝑖 is the upsampled output and 𝑝𝑖 is the 

input from the previous layer. 

5. Convolutional and Sigmoid Layers: The model 

concludes with convolutional layers followed by 

a sigmoid activation function. For the final layer: 

 
𝑧 = W𝑓 ∗ 𝑢 + 𝑏𝑓

𝑦̂ = 𝜎(𝑧) =
1

1+𝑒−𝑧

 (5) 

Where 𝑦̂ is the final output, W𝑓 and 𝑏𝑓 are 

respectively the weights and bias of the final 

convolutional layer, and σ is the sigmoid function. 

The model is trained to minimize the Mean Squar 

Error given by (6). 

 𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑁

𝑖=1  (6) 

Where: 

• 𝑛 is the number of data points. 

• 𝑦𝑖 represents the desired values. 

• 𝑦𝑖  represents the predicted values given by the 

model. 

This architecture allows the model to learn hierarchical 

features from the ECG signal, compress the information 

through pooling, reconstruct the signal's dimensions, and 

output a probability map of peak locations. The use of 

convolutional layers enables the model to capture local 

patterns in the ECG signal, while the upsampling layers 

allow for precise localization of peaks in the original 

signal domain. 

This arrangement allows the model to map the input to 

the desired output – in this case, peak predictions. The 

model is trained using the MIT-BIH arrhythmia 

dataset[25], [26], [27]. We divide the dataset into training 

and testing sets, ensuring robust evaluation. During 

training, the model learns to identify patterns indicative of 

peaks in ECG segments. The training process aims to 

minimize the binary cross-entropy loss between predicted 

and actual peaks. The choice of this architecture is 

supported by its success in various time series analysis 

tasks and its ability to learn hierarchical representations 

efficiently [21], [28]. Additionally, CNNs have 

demonstrated effectiveness in capturing local 

dependencies and invariant features, making them well-

suited for peak detection in ECG signals [29][26]. This 

architecture facilitates automatic feature extraction and 

abstraction, crucial for peak detection in complex ECG 

waveforms. Figure 6 illustrates the model architecture. 

 

3.1.2.3 Model training and result 

The core of our system’s capabilities lies in the 

intricate process of model training and the subsequent 

results it yields. To train the model effectively, we 

employed the MIT-BIH arrhythmia dataset, a well-

established resource in the field of electrocardiography. 

Ensuring the robustness of our model, we thoughtfully 

divided the dataset into training and testing sets. 
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Figure 6. Adopted peak detection model architecture. 

 

The purpose of this division is to evaluate the model’s 

performance under conditions that simulate real-world 

scenarios. During the training phase, the model diligently 

learns to recognize patterns within ECG segments that are 

indicative of peaks. The objective here is to minimize the 

binary cross-entropy loss between the model’s predicted 

peaks and the actual peaks present in the ECG data. The 

end result of this process is a model that possesses the 

remarkable ability to accurately detect peaks in ECG 

signals. This capacity is a pivotal step, as it unlocks a 

multitude of applications within the healthcare domain. 

One of the immediate applications stemming from our 

trained peak detection model is heart rate calculation. 

Precisely identifying the R peaks, which correspond to the 

heart’s contractions, our model enables real-time heart 

rate calculation. The significance of this functionality is 

paramount for evaluating a patient’s cardiac health, 

monitoring fluctuations in heart rate, and gaining insights 

into physiological responses. The model’s exceptional 

performance is evidenced by its impressive accuracy 

metrics. Upon rigorous evaluation, our peak detection 

model demonstrates an accuracy of approximately 

99.93%, with a validation score of 99.87%. This level of 

accuracy is a testament to the model’s prowess in 

discerning intricate features within ECG signals. It not 

only captures the prominent peaks but also detects even 

the faintest indications of peaks, ensuring a 

comprehensive analysis as showed in Figure 7. 

 

 

Figure 7. Evolution of test and validation loss during the 

learning of the phase peak detection model. 

 

Accuracy is a common evaluation metric in deep 

learning method, it is calculated as a ratio of correctly 

predicted instances and its formula is: 

  Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (7) 

Where: 

• TP = True Positives (correct predicted positive 

cases) 

• TN = True Negatives (correct predicted negatives 

cases) 

• FP = False Positives (incorrectly predicted 

positive cases) 

• FN = False Negatives (incorrectly predicted 

negatives cases). 

This remarkable accuracy is a testament to the model’s 

ability to discern intricate features within the ECG signal, 

capturing even the faintest indications of peaks. It is 

important to note that our model’s accuracy is not solely 

a result of over-fitting to the training dataset. Rigorous 
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efforts have been made to ensure the model’s 

generalization and robustness. Upon evaluation on novel, 

unlearned ECG data, the model demonstrates consistent 

high performance, validating its ability to adapt to 

variations across different ECG recordings and generalize 

its peak detection capabilities effectively. One immediate 

application of accurate peak detection is heart rate 

calculation. By precisely pinpointing the R peaks, which 

represent the heart's contractions, the model enables real-

time heart rate computation. This capability is crucial for 

assessing a patient's cardiac condition, monitoring 

fluctuations in heart rate, and gaining insights into 

physiological responses. 

 

3.1.3. Deep learning model for ECG classification 

Following the high accuracy of our peak detection 

model, we embark on a new phase of our research: the 

development of a sophisticated classification model. This 

expansion in scope enables us to offer a more 

comprehensive analysis of cardiac health. 

 

3.1.3.1 Classification database 

The dataset employed in this study serves as a valuable 

resource for the development of deep learning models 

geared towards the classification of cardiac heartbeat 

signals. It amalgamates data originating from two well 

established sources, namely the MIT-BIH arrhythmia 

dataset [25] and the PTB Diagnostic ECG Database [27], 

[30]. This amalgamation results in a dataset that presents 

a diverse and comprehensive collection of ECG signals, 

which are essential for in-depth analysis. With a total of 

87,554 samples comprising the training set and 21,892 

samples in the test set, this dataset offers a substantial 

volume of data suitable for both the training and 

evaluation of deep learning models. Within this dataset, 

each ECG signal corresponds to a distinct heartbeat 

pattern, encompassing a wide spectrum of scenarios. It 

encompasses not only normal heartbeats but also those 

affected by a variety of arrhythmias and myocardial 

infarctions. This diversity renders the dataset suitable for 

a range of tasks, including but not limited to arrhythmia 

classification and anomaly detection. Notably, the 

preprocessing and segmentation steps applied to the 

signals ensure that individual heartbeats are meticulously 

isolated and prepared for analysis. This preprocessing, in 

turn, streamlines the development of precise and effective 

classification models. Researchers and data scientists can 

harness this dataset to advance the field of cardiac signal 

analysis, with the ultimate goal of enhancing the diagnosis 

and monitoring of heart-related conditions.  

 

3.1.3.2 Data loading 

The initial step in the analysis entails the loading of 

two CSV files, denoted as mitbih-train.csv and mitbih-

test.csv into pandas Data Frames. These CSV files are 

repositories of ECG data, where each row corresponds to 

a distinct heartbeat signal. 

 

3.1.3.3 Data exploration 

Following data loading, the code conducts an 

exploratory analysis to ascertain the dimensions of the 

training and test datasets. It is revealed that the training 

set encompasses 87,554 samples, each featuring 188 

distinct features. Similarly, the test set contains 21,892 

samples, each retaining the same number of features. 

 

3.1.3.4 Class distribution 

To gain insights into the distribution of heartbeat 

classes within both the training and test datasets, the code 

quantifies the occurrence of each class, denoted as 0.0, 

1.0, 2.0, 3.0, and 4.0. This enumeration is based on the 

values found in the last column (column 187) of both 

datasets. Understanding the class distribution is crucial for 

comprehending the balance, or potential imbalance, 

present in the dataset. 

 

3.1.3.5 Data analysis 

To enhance the interpretation of class distribution, the 

code generates a pie chart as a visual representation of the 

distribution of heartbeat classes within the training 

dataset. This graphical depiction provides a succinct 

overview of the proportion of each class, thereby 

simplifying the identification of any class imbalances as 

shown in Figure 8. 
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Figure 8. MIT-BIH dataset class distribution. 

 

 

Figure 9. t-SNE and PCA visualization of MIT-BIH 

dataset. 

 

The t-distributed stochastic neighbor embedding (t-

SNE) and Principal component analysis (PCA) plots 

reveal that the five ECG classes in your dataset have 

significant overlap [31], [32], indicating that the features 

used don't fully separate the classes in 2D space. While 

some distinct clusters are visible, particularly for the 

Normal Beats, the overall overlap suggests that simple 

models might struggle with classification. This overlap 

highlights the need for more advanced feature engineering 

or complex models to improve class separability and 

achieve better classification performance as illustrated by 

Figure 9. 

The ROC curve for the multi-class classification 

model visually demonstrates the model's performance 

across the five classes. Each curve represents one class, 

showing the trade-off between the true positive rate 

(sensitivity) and the false positive rate (1-specificity). The 

AUC (Area Under the Curve) values for each class 

indicate the model's ability to distinguish between the 

classes as show in Figure 10. 

 

 

Figure 10. ROC Curve for Multi-class. 

 

3.1.3.6 Resampling dataset 

To rectify class imbalance, the code undertakes a 

resampling procedure. This process involves the creation 

of balanced subsets for each class, specifically classes 0, 

1, 2, 3, and 4. The balance is achieved through either up-

sampling or down-sampling. For instance, the majority 

class (class 0) is downsized to contain 20,000 samples, 

while the minority classes (classes 1, 2, 3, and 4) are 

expanded through up-sampling to match this new size. 

This meticulous resampling guarantees a more 

equitable distribution of classes, a crucial factor for the 

subsequent training of machine learning models. Post-

resampling, the code selects a random sample from each 

class within the training dataset. 
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This selection is performed utilizing the group by 

function, resulting in the creation of a new data frame 

labeled "classes". These randomly selected samples, as 

shown in Figure 11, can serve as valuable resources for 

further analysis, visualization, and, notably, the 

acquisition of insights into the unique characteristics of 

each heartbeat. 

 

 

Figure 11. MIT-BIH dataset classes presentation. 

 

The dataset, drawn from the Kaggle repository [26], 

provides researchers and data scientists with an 

indispensable resource for advancing the field of cardiac 

signal analysis and enhancing the diagnosis and 

monitoring of heart related conditions. 

 

3.1.3.7 Classification model architecture 

Our classification model architecture is meticulously 

crafted to accommodate the intricate nature of ECG 

signals. The proposed model harnesses the power of deep 

learning techniques, as illustrated in Figure 12, 

incorporating both Convolutional Neural Networks 

(CNNs) and Recurrent Neural Networks (RNNs) to 

capture spatial and sequential features inherent within the 

ECG data. This synergistic fusion of spatial and sequential 

analyses enables the model to extract critical information 

from the entire ECG waveform, facilitating a 

comprehensive and holistic understanding of the 

underlying cardiac dynamics. 

The architecture is divided into two major branches: 

one for processing ECG signals with CNNs and another 

for processing them with an RNN. These branches are 

then combined to form a unified model that predicts the 

disease class. CNN Branch: The CNN branch processes 

the ECG data using convolutional layers to capture spatial 

features. Batch normalization is added to stabilize training 

and enhance convergence. Max pooling layers help in 

down-sampling and retaining essential features. The 

flatten layer transforms the output into a 1D vector. RNN 

Branch: The RNN branch deals with the temporal aspects 

of the ECG data. A reshape layer prepares the data for 

Long-Short-Term-Memory (LSTM) processing. 

 

 

Figure 12. Adopted classification model architecture. 

 

LSTM layers process the sequential data, capturing 

temporal dependencies. Dropout is employed to prevent 

over-fitting. Combining CNN and RNN: The outputs of 

the CNN and RNN branches are concatenated, resulting 

in a combined feature vector that captures both spatial and 

temporal information. Dense Layers and Output: This 

concatenated feature vector is passed through dense layers 

with batch normalization, extracting high-level features. 

A softmax activation function is applied to the final layer 

to generate class probabilities for each input. Equation (1), 

(2) and (3) are used respectively for convolution, ReLu 

activation function and Pooling layer respectively. In 
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addition, relations (8) and (9) correspond to the flatten and 

dense layer respectively. 

 𝐅 = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝑝) (8) 

Where 𝐅 is the flatten vector. 

 𝒴𝑖 =
𝑒𝐷𝑖

∑ 𝑒
𝐷𝑗𝐶

𝑗=1

 (9) 

Where: 

• 𝒴𝑖 is the probability of class i. 

• C is the number of classes. 

• 𝐷𝑖 is the ith element of the dense layer output D. 

 

3.1.3.8 Model training and result discussion 

In the intricate process of model training and 

evaluation, our focus was on the development and 

assessment of a robust classification model. Several key 

components played pivotal roles in this phase. 

1) Optimization and loss function: The model was 

compiled using the Adam optimizer, a popular choice for 

optimizing neural networks. This optimizer adapts the 

learning rate during training, which enhances the model’s 

ability to converge to optimal solutions. Additionally, we 

employed the categorical cross-entropy loss function. 

This particular choice is well-suited for multi-class 

classification problems, as it efficiently quantifies the 

disparity between predicted and actual class labels. 

2) Learning rate adaptation: The model’s training 

process benefits from a learning rate scheduler. This 

scheduler dynamically adjusts the learning rate as training 

progresses. The adaptation of the learning rate is crucial 

for ensuring that the model efficiently converges to an 

optimal solution while avoiding overshooting or getting 

stuck in local minima. 

3) Training data: The model is trained on the provided 

training data along with their corresponding class labels 

over a specified number of epochs. This data forms the 

foundation upon which the model refines its internal 

parameters and learns to make accurate predictions. 

Figure 13 illustrates the convergence of the loss 

function towards zero and the accuracy towards one, 

which is as a performant outcome. 

 

 

Figure 13. Evolution of test and validation loss during the 

learning of the classification model. 

One notable aspect of the model’s evaluation is the 

utilization of a confusion matrix, which is an insightful 

tool for assessing the model’s classification accuracy for 

different classes. The confusion matrix for select classes 

is depicted in Figure 14, offering a more detailed 

examination of the model’s performance. 

4) Class-Specific confusion matrices 

 In Figure 14, we delve into class-specific confusion 

matrices. These matrices are indispensable for a more 

granular analysis of the model’s performance concerning 

individual classes. Each subfigure in this set showcases 

the model’s effectiveness in distinguishing the five 

classes' data, shedding light on its classification accuracy 

within each category. By analyzing these results, we can 

gain valuable insights into the strengths and potential 

weaknesses of the classification model. This 

comprehensive evaluation equips us with the knowledge 

required to further refine and optimize our model for more 

accurate and reliable multi-class classification, which is 

vital in healthcare applications and beyond. 

A confusion matrix is a matrix (n × n) used to describe 

the performance of a classification model on a set of test 

data for which the true values are known; it helps to 

understand the types of errors the model is making. 

Where n is the number of classes, each cell (i, j) in the 

matrix represents the number of instances of class i that 

were predicted as j. 
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Figure 14. Confusion matrix result for classification model. 

 

3.2. Embedded health monitoring system setup 

In the realm of IoT, the rapid and efficient processing 

of data is paramount, especially in the context of real-time 

health monitoring. This chapter presents a detailed 

account of the comprehensive implementation of a health 

monitoring platform, harnessing the capabilities of Node-

RED and MQTT protocols to optimize ECG data analysis 

speed and enhance overall system performance. Sensors 

and Micro-controller integration at the core of our 

advanced health monitoring system lies the seamless 

integration of state of-the-art sensors and micro-

controllers. Leveraging the capabilities of sensors such as 

the ECG sensor AD8232, the SpO2 sensor MAX30100A, 

and the temperature sensor DHT11, we ensure a thorough 

data collection process for a holistic assessment of patient 

health. The ECG sensor, seamlessly interfaced with the 

ESP32 micro-controller, delivers real-time ECG data, 

providing valuable insights into the patient’s cardiac 

health. Simultaneously, the SpO2 and temperature 

sensors, connected to the Raspberry Pi, enable continuous 

monitoring of oxygen saturation and body temperature. 

This real-time sensor data forms the cornerstone of our 

healthcare monitoring system, facilitating precise 

diagnoses and timely interventions. The micro-

controllers, acting as central hubs, oversee data collection 

and transmission, ensuring that critical health information 

is readily available for analysis and display. Moreover, to 

enhance portability and flexibility, our system is designed 

to operate on battery power. The patient data collected 

from these micro-controllers is transmitted to a cloud 

server, where it is stored for future use and seamlessly 

integrated into Node-RED flows through the MQTT 

protocol. By implementing this embedded system, 

showed in Figure 15, with battery support, we have 

created a robust infrastructure for health monitoring that 

not only enables accurate assessments and proactive 

healthcare interventions but also enhances the system’s 

portability. The combination of cutting-edge sensors, 

efficient micro-controllers, cloud-based data storage, and 

battery support sets the stage for a reliable, scalable, and 

mobile health monitoring platform. 

 

 

Figure 15. Hardware implementation of the health 

monitoring system. 

 

3.3. IoT architecture 

3.3.1. Real-time ECG analysis 

To create a seamless integration of the ECG peak 

detection model with real time data streaming, an IoT 

architecture is implemented using Node-RED and MQTT 

protocols. This architecture allows for the continuous 

flow of ECG data from the sensor to the model, enabling 

real-time analysis and visualization. The Node-RED 

platform provides a visual programming interface that 

simplifies the creation of complex IoT workflows. 

MQTT, a lightweight messaging protocol, is used for 

efficient communication between devices and the cloud 

server. 

 

3.3.2.  Node-RED integration process 

The Node-RED workflow consists of three main 

components: data acquisition, model integration, and 

visualization. 

 

3.3.3. Data acquisition 

ECG signals are collected using the AD8232 sensor 

and ESP32 microcontroller. The sensor detects electrical 
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signals from the heart and transmits them to the micro-

controller. The data is then sent to the Node-RED flow 

through MQTT messages. 

 

3.3.4. Models integrated into Node-Red 

Our health monitoring platform seamlessly 

incorporates two TensorFlow models into the Node-RED 

environment. These models, previously trained and fine-

tuned for ECG peak detection and ECG pattern 

classification, have been converted to TensorFlow.js, 

allowing for efficient utilization within Node-RED for 

real-time data analysis and visualization. The received 

ECG data is processed by the peak detection model, which 

predicts the location of peaks in the signal. 

 

3.3.4.1 Peak detection model 

The ECG data is processed by the Peak Detection 

Model, which has been meticulously trained to predict the 

precise locations of peaks within the ECG signal, 

providing crucial insights into cardiac activity. 

Additionally, this model calculates the heart rate, further 

enhancing the information available to healthcare 

professionals. 

 

3.3.4.2 Classification model 

Simultaneously, the ECG data is subjected to analysis 

by our classification Model, a TensorFlow-powered 

algorithm adept at distinguishing between normal and 

pathological ECG patterns. This dual-model integration 

empowers healthcare professionals with comprehensive 

insights into the patient’s cardiac health, all within the 

Node-RED environment. the flow of this work is 

illustrated by Figure 16. 

 

 

Figure 16. Node-RED flow of the deep learning models 

integration. 

3.3.5. Node-RED Sensors integration 

The integration process involves creating intuitive and 

interconnected flows within Node-RED, linking the ECG 

sensor AD8232, the SpO2 sensor MAX30100A, and the 

temperature sensor DHT11. Through custom Node-RED 

nodes and configurations, we establish a cohesive 

network that effortlessly processes real-time data from 

these sensors. The ECG sensor provides crucial 

information about the patient’s cardiac activity, the SpO2 

sensor contributes data on oxygen saturation levels, and 

the temperature sensors offers insights into the ambient 

conditions. These sensor inputs are meticulously woven 

into Node-RED flows, ensuring a synchronized and 

coherent stream of health data. Leveraging the MQTT 

protocol, the integrated sensor data is then efficiently 

transmitted to the cloud for storage and advanced analysis. 

The flexibility and visual simplicity of Node-RED make 

it a powerful tool for orchestrating sensor integration, 

enabling our health monitoring platform to deliver 

accurate and timely health insights Figure 17. 

 

 

Figure 17. Node-RED flow of the sensors' integration. 

 

3.3.6. Node-RED patient alert 

To enhance the user experience and enable immediate 

response in critical situations, our health monitoring 

system includes a patient-triggered alert notification flow 

which is depicted in Figure 18. A dedicated button is 

incorporated into the system, allowing the patient to 

initiate an alert when they sense a medical emergency or 

discomfort. Upon pressing the alert button, Node-RED 

seamlessly generates a notification, which is then 

promptly dispatched to the attending medical 

professionals. This real-time alerting system ensures that 

healthcare providers receive timely notifications, enabling 
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swift and decisive actions. The integration of this patient-

initiated alert feature adds an extra layer of responsiveness 

to our health monitoring platform, emphasizing patient 

empowerment and facilitating rapid medical interventions 

when needed. 
 

 

Figure 18. Node-RED flow of the patient alert. 

 

3.3.7. Node-RED doctor login account 

In our Node-RED dashboard, we have implemented a 

secure and personalized doctor account system to ensure 

confidentiality and restricted access. Each authorized 

doctor is provided with unique login credentials, adding a 

layer of authentication to prevent unauthorized access as 

showing in Figure 19. 
 

 

Figure 19. Node-RED login interface. 

 

3.3.8. Visualization 

In the visualization component of our health 

monitoring platform, we provide healthcare professionals 

with a comprehensive view of critical cardiac information 

in real-time. Figure 20 shows the corresponding Node-

RED flow. 

 

Figure 20. Node-RED flow of the display block. 

3.3.9. Real-time ECG signal 

The real-time ECG signal, received from the sensor via 

the MQTT protocol, is displayed on the Node-RED 

dashboard. This continuous stream of data allows for the 

immediate assessment of the patient’s cardiac activity, 

providing essential information for timely interventions. 

 

3.3.10. Predicted peak markers 

The locations of ECG peaks, determined by our Peak 

Detection Model, are superimposed onto the ECG 

waveform on the dashboard. These markers offer visual 

cues, aiding in the interpretation of the ECG signal. 

 

3.3.11. Heart rate display 

The heart rate, calculated in real-time based on the 

positions of ECG peaks, is prominently shown on the 

dashboard. This vital metric offers healthcare 

professionals immediate insights into the patient’s cardiac 

rhythm and overall heart health. 

 

3.3.12. QRS complex monitoring 

Continuously monitoring the ECG signal, we extract 

one QRS complex at a time. After applying our 

Classification Model, each QRS complex is classified, 

providing valuable information about the specific cardiac 

pattern. This dynamic display of QRS complexes with 

their respective classifications equips healthcare 

providers with the ability to quickly assess the patient’s 

cardiac condition, distinguishing between normal and 

pathological patterns. 

 

3.3.13. SpO2 monitoring 

Data from the SpO2 sensor (MAX30100A) is collected 

and transmitted to Node-RED, where it is integrated into 

the dashboard. SpO2 levels are displayed alongside other 

health metrics, offering a comprehensive view of the 

patient’s well-being. 

 

3.3.14. Patient temperature monitoring 

The system employs a precision temperature sensor 

specifically designed for human patient monitoring. This 
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sensor continuously measures the patient’s body 

temperature with remarkable accuracy. 

 

3.3.15. Temperature and humidity readings 

The DHT11 sensor provides temperature and humidity 

data, which is sent to Node-RED and displayed on the 

same dashboard. This additional environmental data 

contributes to a holistic understanding of the patient’s 

condition, aiding in healthcare decision-making. 

 

3.3.16. Patient information and alert system 

Each patient is assigned a unique identification (ID) 

number, which is stored and associated with their vital 

signs and health data in the system. Alongside the patient 

ID, the system records the time of each data measurement, 

ensuring a comprehensive timeline of health events. In the 

event of critical conditions or abnormalities detected by 

the monitoring sensors, an alert LED illuminates, 

providing visual notification to healthcare staff for 

immediate attention. Additionally, a reset button is 

incorporated into the system. This comprehensive 

visualization interface within Node-RED empowers 

healthcare professionals with real-time insights into the 

patient’s cardiac activity, aiding in rapid decision-making 

and interventions when necessary. 

 

3.4. Node-RED dashboard 

The Node-RED dashboard offers a user-friendly 

interface tailored for healthcare professionals, facilitating 

the comprehensive monitoring and analysis of patient 

data. Within the dashboard, healthcare practitioners can 

observe a multitude of vital parameters in real-time, 

including the representation of the heartbeat signal, 

average peaks, and peak detection. Furthermore, it 

provides visualizations of the QRS complex along with its 

classification, allowing for a more detailed cardiac 

assessment. Additionally, essential physiological metrics 

such as heart rate, oxygen saturation, and patient 

temperature are prominently displayed. Moreover, 

environmental factors such as room temperature and 

humidity are integrated into the interface to provide 

contextual information. Crucially, the dashboard also 

features patient identification, timestamp information, 

and LED alerts for immediate attention to critical events. 

Lastly, the inclusion of a reset button ensures the 

interface’s functionality and readiness for subsequent use. 

This comprehensive array of options empowers 

healthcare practitioners to make informed decisions 

regarding medical interventions while ensuring seamless 

monitoring of patient health status. 

 

3.5. Comprehensive healthcare system integration 

A pivotal aspect of this research entails the seamless 

integration of cutting-edge sensor technologies and robust 

IoT infrastructure to construct a comprehensive 

healthcare system. At its core, micro-controllers act as the 

nerve center, orchestrating the collection and transmission 

of vital data from an array of sensors. Notably, the 

advanced AD8232 sensor captures intricate ECG data, 

providing invaluable insights into cardiac health. 

Additionally, the inclusion of SpO2 sensors allows for the 

continuous monitoring of oxygen saturation levels, while 

the RTD temperature sensor, alongside the DHT11 

sensor, offers precise measurements of patient 

temperature and environmental factors such as room 

temperature and humidity. The amalgamation of these 

sensors serves as the foundation for acquiring 

comprehensive patient health data in real-time. 

Leveraging the efficiency of the MQTT protocol, this data 

is seamlessly transmitted to a secure cloud server. 

Subsequently, Node-RED, a powerful flow-based 

development tool, processes this incoming data stream 

and interfaces with the previously developed deep 

learning models for ECG analysis and classification. This 

integration empowers healthcare professionals with 

accurate and timely diagnostic insights, enhancing patient 

care outcomes. Furthermore, the visual representation of 

this processed data is facilitated through a user-friendly 

dashboard. Here, healthcare practitioners can seamlessly 

monitor and analyze crucial patient metrics, including 

ECG waveforms, peak markers, heart rate, SpO2 values, 

temperature readings, and environmental factors. The 

comprehensive visualization provided by the dashboard 

enables healthcare professionals to make informed 

decisions regarding medical interventions, ultimately 

improving patient outcomes and advancing healthcare 

delivery. A final visualization example is showed in 

Figure 21. 
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Figure 21. Final dashboard. 

 

3.6. Experimental work 

To validate our proposed system, we conducted a 

series of experiments using a comprehensive setup 

comprising both hardware and software components as 

presented in diagram Figure 22. 

• ESP32 Microcontroller: The ESP32, showed by Figure 

23 served as the primary controller for our system, 

handling data acquisition from various sensors. It was 

selected for its versatility, low power consumption, 

and robust wireless communication capabilities. The 

ESP32 efficiently managed the initial signal pro-

cessing tasks, ensuring that data was preprocessed be-

fore being transmitted to the Raspberry Pi. 

• Raspberry Pi 4B: The Raspberry Pi 4B, illustrated by 

Figure 24, was utilized as the central processing hub in 

our experimental setup. Equipped with a Quad-core 

Cortex-A72 processor, it provided the necessary com-

putational power to run deep learning models in real-

time. The Raspberry Pi also facilitated data manage-

ment and communication with external systems via its 

integrated wireless networking capabilities, including 

dual-band 802.11ac Wi-Fi and Bluetooth 5.0. 

 

Figure 22. Global hardware diagram.  

 

 

Figure 23. ESP32 Microcontroller. 

 

 

Figure 24. Raspberry pi 4 4B. 

 

• AD8232 ECG Sensor: Figure 25 shows the used 

AD8232 ECG sensor was employed to capture high-

fidelity electrocardiogram (ECG) signals. This device 

is designed for low-power, high-accuracy applications, 

making it ideal for continuous heart monitoring. It con-

ditioned the raw ECG signal before passing it to the 

analog-to-digital converter (ADC) for digitization. 
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Figure 25. AD8232 ECG sensor. 

 

As illustrated in Figure 26, the ADS1115, a 16-bit 

ADC, digitized the conditioned ECG signal from the 

AD8232 sensor at a sampling rate of 250 SPS. This high-

resolution digital data was subsequently transferred to the 

Raspberry Pi for further processing. 

 

 

Figure 26. ADS1115 analogic to digital converter. 

 

• A body temperature sensor, as depicted in Figure 27, 

was incorporated into the system to provide compre-

hensive health monitoring. The Raspberry Pi pro-

cessed data from this sensor in conjunction with other 

vital signs for synchronized patient assessment. 

 

  

Figure 27. Human body temperature sensor. 

 

To enhance environmental monitoring, a DHT11 

sensor, as illustrated in Figure 28, was integrated into the 

system. This sensor provided real-time temperature and 

humidity data, which can significantly impact the 

accuracy and reliability of health measurements. 

 
Figure 28. DHT11 temperature and humidity sensor. 

 

Real-time data from these different devices and sen-

sors was continuously collected and transmitted for im-

mediate processing by our trained deep learning models. 

Figure 29 presents the complete experimental setup, in-

cluding the developed HMI. 

 

3.7. The estimation time for the real time ECG 

monitoring  

In our real-time ECG monitoring system, we employed 

the AD8232 ECG sensor for signal conditioning, the 

ADS1115 ADC converter for high-resolution digital 

conversion, and the Raspberry Pi 4B, equipped with a 

Quad-core Cortex-A72 processor and wireless 

connectivity, for data processing and management. The 

system's real-time response time was accurately measured 

using a "Rohde & Schwarz RTM3000" oscilloscope from 

Germany, providing precise timing information for each 

component of the process. 

 

 

Figure 29. Schematic representation of the experimental 

setup used in our study. 
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The oscilloscope measurements showed that the ADC 

conversion on the ADS1115 at 250 SPS takes 

approximately 4 ms per sample. Data processing, 

including handling and preprocessing, contributes an 

additional 1-10 ms, while deep learning inference on the 

Raspberry Pi 4B requires about 50-150 ms per batch. 

The measurements from the RTM3000 oscilloscope 

revealed that the total response time ranges from 55 ms to 

164 ms, with a typical value around 100-150 ms, 

depending on the model's complexity and preprocessing 

steps. 

When considering physiological parameters 

identification, including ECG analysis, it's crucial to 

maintain a balance between response time and accuracy. 

For most real-time ECG monitoring applications, a 

response time of 150-250 ms is generally acceptable. This 

allows for timely detection of critical events while 

ensuring accurate signal processing and analysis. 

However, for applications requiring the detection of very 

rapid changes in cardiac activity, such as certain 

arrhythmias, aiming for a response time closer to 100 ms 

or less may be beneficial. It's important to note that 

reducing response time should not come at the cost of 

sacrificing the accuracy and reliability of the 

physiological parameter identification algorithms. 

 

3.8. Comparison with our result and related work 

The Table 1 illustrate the most advantages and 

drawbacks between our paper and important related 

works.

 

Table 1. Performance comparison of our approach with existing works. 

Author 

& Year 

Device name Method Sensors & 

microcontrollers  

Software & 

application 

Accuracy 

& 

Results 

Advantages Drawbacks 

Islam et 

al., 2020 

[22]  

Healthcare 

Monitoring 

System in 

IoT Environ-

ment 

Development of a 

smart healthcare mon-

itoring system in an 

IoT environment uti-

lizing five sensors: 

heart rate, body tem-

perature, room tem-

perature, CO and CO2 

sensors. 

• ESP32. 

• Heart beat sen-

sor.  

• LM35, DHT11 

• CO sensor 

(MQ-9)  

• CO2 sensor 

(MQ-135)   

 

• Web 

server 

• HTML 

Limit 

(<5%) for 

each case 

Real-time 

healthcare 

monitoring, 

use of IoT. 

No AI and no 

DL used 

Mary et 

al., 

2023[21] 

Electrocardi-

ogram signal 

classification 

in an IoT en-

vironment 

Development of an 

IoT based ECG moni-

toring system utilizing 

a heart rate sensor and 

classification using 

Adaptive Deep Neural 

Networks (ADNN). 

• BASN (Body 

Area Network) 

 

 

• MATLAB 

98.1% IoT Cloud 

based Health 

Monitoring 

System; ECG 

dataset; use of 

ADNN. 

Based just on 

the classifica-

tion (no ECG 

analysis), uses 

just 2 classes 

(normal, abnor-

mal) 

Zhang et 

al., 2021 

[21] 

Optimization 

of short ECG 

segment in 

IoT based in-

telligent 

healthcare 

system 

Development of ECG 

classification based on 

CNN in IoT healthcare 

systems. 

• ECG Device  

 

• Not 

mention  

The aver-

age F1-

score 

reached 

84.3% 

ECG classifi-

cation, use of 

CNN, use of 

IoT. 

The accuracy is 

not the same 

for the classes, 

no ECG analy-

sis, healthcare 

system with 

just ECG sen-

sor 

 

Table 1 (continued) 
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Table 1 (continued). Performance comparison of our approach with existing works. 

Author 

& Year 

Device name Method Sensors & 

microcontrollers  

Software & 

application 

Accuracy 

& 

Results 

Advantages Drawbacks 

Debnath 

et al., 

2022. 

[23] 

IoT-Based 

Real-Time 

Patient Tele-

monitoring 

System  

Design and implemen-

tation of a real-time 

remote patient moni-

toring (IoT) technol-

ogy and biomedical 

sensors 

• Arduino 

Mega2560   

•  Temperature 

sensor (LM35) 

•  SPO2 Sensor  

•  Blood pres-

sure sensor  

•  WIFI module 

ESP8266 

•  GSM module 

SIM800L 

 

• Arduino 

C 

• Interface 

platform 

not men-

tion 

- Real-time 

monitoring; 

multi-sensors; 

comparison 

with medical 

instruments 

No ECG analy-

sis, no AI no 

DL used 

Our Re-

search 

AI-Driven IoT 

Healthcare 

System for 

Real-Time 

ECG Analysis  

Integrated healthcare 

system using ESP32, 

Raspberry Pi, Node-

RED, MQTT, and deep 

learning models trained 

on MIT-BIH dataset. 

• Raspberry Pi 4   

• ESP32  

• ECG sensor 

(AD8232), 

SPO2 

(MAX30100) 

• DHT11 sensor 

• Body tempera-

ture sensor  

 

• Python 

• Node-RED 

(Java script) 

Accuracy 

of approxi-

mately 

99% 

Real-time ECG 

analysis; com-

prehensive pa-

tient monitoring; 

uses multiple 

sensors (ECG, 

SPO2, tempera-

ture); advanced 

IoT infrastruc-

ture; high accu-

racy deep learn-

ing models 

Doesn't focus on 

security 

 
 

4. Conclusion 

This study has successfully achieved its primary 

objectives of developing advanced deep learning models 

for ECG analysis, creating an integrated IoT-based 

healthcare system, and evaluating its potential clinical 

impact. The research presents a significant advancement 

in the field of AI-driven healthcare monitoring, 

particularly in the domain of real-time ECG analysis and 

comprehensive patient monitoring. The proposed deep 

learning models demonstrated exceptional accuracy in R-

R peak detection and disease classification, achieving 

approximately 99% accuracy. This performance surpasses 

many existing approaches in the field, showcasing the 

potential of AI in enhancing ECG interpretation. 

The developed IoT system effectively acquired and 

analyzed multiple physiological parameters in real-time, 

including ECG, SpO2, and temperature. This multi-sensor 

approach provides a more holistic view of patient health, 

enabling more comprehensive monitoring and potentially 

more accurate diagnoses. The system's ability to process 

ECG data in real-time, with a response time ranging from 

55 ms to 164 ms, demonstrates its potential for immediate 

clinical application. This speed is crucial for timely 

detection of cardiac events and rapid clinical decision-

making. Furthermore, the implementation of a user-

friendly Node-RED dashboard enhances the system's 

practicality, allowing healthcare professionals to easily 

monitor and interpret patient data. 

The synergistic combination of deep learning and IoT 

technologies in this system holds significant potential to 

improve patient outcomes. It offers enhanced diagnostic 

accuracy, enables early disease detection, and facilitates 

personalized patient care. The system's ability to 

continuously monitor and analyze multiple physiological 

parameters could revolutionize both in-hospital care and 

remote patient monitoring. 

While this study represents a substantial step forward, 

there are areas for future research and development. These 

include expanding the system's capabilities to include 

additional physiological parameters and disease 

classifications, addressing potential security and privacy 

challenges associated with IoT-based healthcare systems, 

conducting large-scale clinical trials to further validate the 

system's efficacy and impact on patient outcomes, and 
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exploring the integration of this system with existing 

healthcare infrastructure and electronic health records. 

This research contributes significantly to the ongoing 

advancement of healthcare technology, demonstrating the 

power of integrating AI and IoT for improved patient care. 

It paves the way for a future where these technologies 

seamlessly collaborate to enhance medical diagnostics, 

enable proactive healthcare interventions, and ultimately 

improve patient lives. As we continue to refine and 

expand upon this system, we move closer to realizing the 

full potential of AI-driven, IoT-enabled healthcare 

monitoring. 

Future research should focus on further enhancing the 

system's capabilities and addressing its current 

limitations. This may include developing more 

sophisticated deep learning models capable of detecting a 

wider range of cardiac abnormalities, integrating 

additional physiological sensors to provide an even more 

comprehensive view of patient health, and exploring the 

use of edge computing to reduce latency and improve real-

time performance. Additionally, investigating the long-

term impact of such systems on patient outcomes through 

longitudinal studies will be crucial. Research into 

improving the system's interpretability and explainability 

will also be vital, ensuring that healthcare professionals 

can trust and effectively utilize the AI-driven insights. 

Finally, exploring the potential of this technology in 

preventive healthcare and personalized medicine could 

open new avenues for proactive health management and 

disease prevention. 
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