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Abstract 

In the context of condition-based maintenance of rotating machines in manufacturing systems, the early diagnosis of 
possible faults related to rolling elements of the bearing is mainly based on techniques from artificial intelligence, 
namely, Machine Learning (ML) and Deep Learning (DL). Approaches based on using Deep Learning methods have 
been the most coveted in recent years. Among a variety of models, the type of architecture known as Long-Short-Term 
Memory (LSTM) of Recurrent Neural Network (RNN) has both the ability to capture long-term dependencies and to 
adapt to sequential data modeling. It is therefore able to work on data without any preprocessing. This paper studies 
using four types of LSTM networks to diagnose bearing faults in a classification approach. It aims to intervene on both 
the input parameters and the network architecture, to achieve high performance. The proposed method is carried out in 
two different ways. In the first case, the data inputs are raw frames of vibration signals. However, in the second case, 
the network inputs are pre-computed time-frequency features. The results clearly showed that LSTMs are more accurate 
with the latter. 
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1. Introduction 

Guidance and power transmission allow bearings to 
play a leading role in the operation of rotating machines. 
These important functions involve the use of all possible 
means to protect this organ. Indeed, its failure can not only 
alter its environment but also, in many cases, cause the 
shutdown of an entire production line. Thus, it is possible 
to maximize the lifespan of these sensitive organs by 
applying an adequate predictive maintenance strategy. In 
this context, Scheffer and Girdhar advocated the use of a 
technique based primarily on vibration analysis [1]. The 
diagnostics identified suspected defects inside the rolling 
organs of the bearing. This result leads to the 
implementation of maintenance monitoring based on the 
condition rather than systematic maintenance, which is 
increasingly neglected for particularly obvious economic 

reasons. According to O'Donnell [2], statistical studies 
have shown that 30-40% of rotating machine failures are 
caused by bearing damage. Randall and Antoni [3] 
confirms the concern of many specialists about the 
difficulty of pronouncing on the condition of the bearing. 
This pretext justifies the development of multiple 
diagnostic methods. Moreover, some studies have been 
clearly identified in a review by Henriquez et al. [4]. 

The use of methods based on Machine Learning (ML) 
has inspired an era of artificial intelligence. Thus, 
diagnosis is now approached through a classification 
problem. It covers the methods and concepts that are 
automatically extracted from the data, prediction, and 
decision-making models. In this context and for many 
years, a variety of algorithms based on the extraction of 
characteristics from vibration or acoustic signals, as in the 
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work of Choudhury and Tandon [5], have been developed 
for the diagnosis of bearing defects. These methods 
include the use of Artificial Neural Networks (ANN) by 
Dubey and Agrawal [6]. In addition, Rojas and Nandi [7] 
and Benkedjouh et al. [8] used a Support Vector Machine 
(SVM). Even more, the use of Hidden Markov Models 
(HMM) by Purushotham et al. in [9], K Nearest Neighbors 
(KNN) by Tian et al. in [10], Gaussian Mixting Models 
(GMM) by Atmani et al. in [11], and others like in [12] 
and [13]. However, with big data, these classical methods 
have become increasingly unsuitable for this increase in 
size. In parallel, Deep Learning (DL) has overcome this 
problem. Furthermore, the larger the data size, the more 
effective the DL method will be. 

Since 2006 to date, a wide variety of deep learning 
architectures applied to Machine Health Monitoring 
(MHM) reviewed by Zhao et al. in [14]. With regard to 
the special use of these methods in bearing fault diagnosis, 
Zhang et al. summarized them well in [15] and the works 
carried out in the field. We first find the convolutional 
neural networks (CNN)-based methods applied by Zhang 
et al. in [16], Guo et al. in [17] and Chen et al. in [18], on 
different data sources and at variable rotation speeds, to 
obtain high performance in bearing fault diagnosis. 
Methods based on Auto-Encoders (AE) are also in a good 
position. Their application to bearing diagnoses can be 
cited in the work of Mao et al. [19]. Other variants of AEs, 
as in [20] and [21], have been used and have all proven a 
certain form of performance. Another class named Deep 
Belief Network (DBN) was also applied. The three-layer 
DBN used by Chen and Li [22] provides a good example. 
Staying in continuity, another category called Generative 
Adversarial Network (GAN) can be mentioned here. Liu 
et al. proposed an application case in [23] for 
unsupervised diagnosis of bearing faults. Finally, 
particular interest has been given to Recurrent Neural 
Network (RNN). The latter is well-suited for capturing 
and modelling sequential or time-series data. Applications 
of RNN were limited owing to the gradient 
vanishing/exploding issue, until the advent of its version, 
referred to as Long Short-Term Memory (LSTM), 
developed by Hochreiter and Schmidhuber in 1997 [24], 
to overcome this problem. It has a large capacity to 
memorize and model long-term dependencies in time-
series data and textual analyses. 

Up to date, recurrent neural network have been 
successful in many areas, such as voice and handwriting 

recognition, video analysis, and more. It is worth 
mentioning the work of Abed et al. in [25], who reported 
the application of RNNs in bearing fault diagnosis. The 
data input to the classifier were features extracted using a 
Discrete Wavelet Transform (DWT). The experimental 
results have proven the ability of the algorithm to 
accurately detect and classify bearing defects. Guo et al. 
[26], propose another method named RNN Health 
Indicator (RNN-HI) in which, time-frequency features 
obtained from wind turbines bearings datasets are used. 
The goal is to predict the Remaining Useful Life (RUL) 
of bearings using LSTM cells and RNN layers. According 
to the authors, the proposed RNN-HI method performs 
better than the Self-Organized Map (SOM) method. Pan 
et al. [27] presented a bearing fault classification method 
based on a network architecture composed of a 1-D CNN 
and LSTM. The network input data were raw signals 
without preprocessing. A high accuracy was obtained for 
the different configurations tested. Finally, a recent work 
of Zhao and Shao [28] proposed an adaptive method for 
bearing fault diagnosis based on a Deep Gated Recurrent 
Unit (DGRU). The procedure for learning features 
obtained from vibration signals is based on an Artificial 
Fish Swarm Algorithm (AFSA) and an Extreme Learning 
Machine (ELM). The results were powerful and robust. 

While the adaptation of LSTMs neural networks to 
sequential data and time series has been proven, the 
literature remains poor in works dedicated to their 
application to the diagnosis of defects in rotating 
machinery in general, and rolling bearing elements in 
particular. Difficulties related to the choice of hyper 
parameters, overfitting problem, and laborious calculation 
times contributed to these limitations. However, current 
interest is growing, and our contribution in this paper 
attempts to bring solutions to the problems posed. We will 
investigate the performance of LSTMs with single-layer 
and deeper layers. Thus, obtaining good results with 
modest computing resources will greatly open the field to 
industrial implications in the context of conditional 
maintenance (in both online and offline modes). The rest 
of the writing starts in Section 1, with theoretical elements 
of the proposed method, which includes a classification 
scheme, used LSTMs architectures, and time-frequency 
features. Section 2 presents an application case study. The 
results and discussions are the concerns of Section 3. 
Finally, the paper ends with a conclusion and perspective. 
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Figure 1. Workflow diagram of the proposed LSTM neural network for classification. 

 

2. Proposed Method 

This study aims to explore the possibilities of using 
LSTM networks in the diagnosis of bearing defects using 
a multitude of adopted strategies. Thus, two distinct input 
data formats were applied to four models with different 
LSTM network architectures: three variants of a 
unidirectional network with one, two, and three hidden 
layers (basic ULSTM, stacked 2 ULSTM, and stacked 3 
ULSTM, respectively) and a bidirectional network variant 
(BLSTM) with a single hidden layer. Eight possible 
scenarios were occasionally tested to achieve the best 
performance in terms of precision and calculation time. 

 

2.1. Diagram and strategies 

The progress of each elaborate classification process 
goes through three stages, well described by the diagram 
in Figure 1. The first stage includes preprocessing applied 
to the original signals to homogenize them in shapes and 
sizes. For half of the scenarios (4 in number), the raw 
signal frames obtained are grouped to be introduced to the 
input layer of the classification network. However, for the 
other half of the remaining scenarios, extracting spectral 
features from the obtained signal frames is necessary, 
followed by normalization of the data before their 
introduction into the network's input layer. The second 
step is to randomly distribute training and test data groups. 
The third and final step consists of choosing the 
architectural model of the classifier. 

 

2.2. Behavior of a LSTM network cell 

Recurrent neural networks are well suited to handling 
temporal sequence learning problems. They use the 
backpropagation algorithm in their training process. 
However, it has been proved in certain works, such as 
those of Bengio et al. [29], that traditional RNNs cannot 
capture long-term dependencies due to the strong 
limitation of the gradient vanishing problem during the 
backpropagation period. This is why Long-Short-Term 
Memory (LSTM) proposed in 1997 by Sepp Hochreiter 
and Juergen Schmidhuber [24], came to overcome this 
issue. 

The concept behind the widespread use of LSTM is 
that a few gates and a memory cell control the flow of 
information and can apprehend at each time step, more 
precise long-term dependencies. The block structure of 
LSTM consists of one memory cell and three gates. The 
input gate is used to control the value entered into the 
LSTM and transfer it to the memory cell. The forgetting 
gate allows control of the memory cell to retain or delete 
information. The output gate monitors the output of the 
current state so that only the desired value will be kept in 
the memory cell in the next step. 

The operation mode of the LSTM can be governed by 
the following mathematical updated equations: 

𝑖௧ = 𝜎(𝑊௜𝑥௧ + 𝑉௜ℎ௧ିଵ + 𝑏௜)               (1) 

𝑓௧ = 𝜎൫𝑊௙𝑥௧ + 𝑉௙ℎ௧ିଵ + 𝑏௙൯             (2) 

𝑜௧ = 𝜎(𝑊௢𝑥௧ + 𝑉௢ℎ௧ିଵ + 𝑏௢)                 (3) 

Č௧ = 𝑡𝑎𝑛ℎ(𝑊௖𝑥௧ + 𝑉௖ℎ௧ିଵ + 𝑏௖)           (4) 
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𝑐௧ = 𝑓௧ ⊙ 𝑐௧ିଵ + 𝑖௧ ⊙ Č௧            (5) 

ℎ௧ = 𝑜௧ ⊙ 𝑡𝑎𝑛ℎ (𝑐௧)              (6) 

Where W and V are weight matrices and b are bias 
vectors. These parameters of model are determined during 
the training phase and shared at every time step. ⊙ 
denotes the Hadamard product. σx and tanhx are activation 
functions, which are defined as follows: 

𝜎௫ =
ଵ

ଵା௘షೣ              (7) 

𝑡𝑎𝑛ℎ௫ =
௘ೣି௘షೣ

௘ೣା௘షೣ             (8) 

 

2.3. Classification based on raw signals 

This first strategy concerns four types of LSTM 
network architecture models designed to classify bearing 
conditions. It has been used both in unidirectional and in 
bidirectional modes. A unidirectional case is developed 
under a basic form (single hidden layer) and under a 
stacked form (with two and three hidden layers). 

The architecture of the different unidirectional LSTM 
networks (ULSTM) obeys the same functional 
classification diagram presented in the first block of 
Figure 2. The data flow starts from the input layer, 
undergoes modifications through one or more hidden 
layers formed by LSTM blocks with N time steps, and 
ends at the end on an output layer (Softmax) of the 
classifier. In the case of Basic ULSTM, there is only one 
single hidden layer (j=1) for N time steps. However, for 
used stacked ULSTMs, two and three hidden layers are 
stacked forming the network (1<j≤M=4) for N time steps 
too. 

However, the BLSTM network architecture processes 
sequence data in both forward and backward directions, 
using two separate hidden layers. This concept taken from 
the bidirectional RNN of Schuster and Paliwal [30], 
allows the network to learn long-term dependencies, of 
the complete time series and at each time step. The 
structure of a basic BLSTM network (single or non-
stacked) is shown in the second block of Figure 2. The 
output data of the front and back layers are estimated from 
the standard LSTM updated equations (1) to (6). 

 

 

Figure 2. Block diagram of global classification scheme based on raw signals.
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The general equations which induce the update for any 
Mth arbitrary layer, of unidirectional stacked form are 
listed below: 

 

𝑖௧
ெ = 𝜎൫𝑊௜

ெℎ௧
ெିଵ + 𝑉௜

ெℎ௧ିଵ
ெ + 𝑏௜

ெ൯           (9) 

𝑓௧
ெ = 𝜎൫𝑊௙

ெℎ௧
ெିଵ + 𝑉௙

ெℎ௧ିଵ
ெ + 𝑏௙

ெ൯        (10) 

𝑜௧
ெ = 𝜎(𝑊௢

ெℎ௧
ெିଵ + 𝑉௢

ெℎ௧ିଵ
ெ + 𝑏௢

ெ)        (11) 

Č௧
ெ = 𝑡𝑎𝑛ℎ(𝑊௖

ெℎ௧
ெିଵ + 𝑉௖

ெℎ௧ିଵ
ெ + 𝑏௖

ெ)       (12) 

𝑐௧
ெ = 𝑓௧

ெ ⊙ 𝑐௧ିଵ
ெ + 𝑖௧

ெ ⊙ Č௧
ெ         (13) 

ℎ௧
ெ = 𝑜௧

ெ ⊙ 𝑡𝑎𝑛ℎ(𝑐௧
ெ)          (14) 

 

It should be noted that in this hierarchical 
configuration, each intermediate hidden layer of the 
LSTM network constitutes an input for the next one and 
an output for the previous one. Raw vibration signals (or 

possibly the manually extracted features) form the data of 
the first input layer of the network. The output data from 
the last hidden LSTM layer is sent to a fully connected 
layer and then to the Softmax layer for classification. 

 

2.4. Classification based on spectral features 

This second classification strategy is applied to the 
four LSTM network architecture models intended to 
detect rolling conditions. Once the original signals have 
been preprocessed and segmented, during this phase we 
proceed to the manual extraction of two types of spectral 
features, namely the instantaneous frequency (IF) and the 
spectral entropy (SE). As the difference between their 
values is considerable, a normalization process is 
necessary, before sending them to the input of each 
architectural model. Figure 3 clearly shows the overall 
classification scheme. 

 

 

 

 
Figure 3. Block diagram of global classification scheme based on spectral features. 
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2.1.1. Estimate instantaneous frequency 

The Instantaneous Frequency (IF) of a non-stationary 
signal is a parameter linked to the average of the 
frequencies present in the signal and which varies over 
time [31] and [32]. It can be estimated as the first 
conditional spectral moment of the time-frequency 
distribution of the input signal, or from the derivative of 
the phase shift of the input analytical signal. In this work, 
the first approach was used and it is done as follows: 

First step: the power spectrum (spectrogram) S(t, f) of 
the input signal is computed and used as a time-frequency 
distribution 

Second step: Estimation of the instantaneous 
frequency using the expression: 

𝑓௜௡௦௧(𝑡) =
∫ ௙ ௌ(௧,௙) ௗ௙

ಮ

బ

∫  ௌ(௧,௙) ௗ௙
ಮ

బ

           (15) 

 

2.1.2. Spectral Entropy 

Spectral entropy (SE) is a measure of the normalized 
spectral power distribution of a signal, treated as a 
probability distribution and from which the Shannon 
entropy from information theory is calculated. This 
property gives it wide use in many fields and is useful for 
feature extraction in fault detection and diagnosis [33]. Its 
equations follow both from those of the power spectrum 
and the probability distribution of a signal. 

Thus, for a signal x(n), the power spectrum is: 

𝑆(𝑚) = |𝑋(𝑚)|ଶ          (16) 

Where 𝑋(𝑚) is the discrete Fourier transform of  𝑥(𝑛).  
The probability distribution  𝑃(𝑚) becomes: 

𝑃(𝑚) =
ௌ(௠)

∑ ௌ(௜)೔
           (17) 

The spectral entropy H is expressed by: 

𝐻 = − ∑ 𝑃(𝑚) 𝑙𝑜𝑔ଶ 𝑃(𝑚)ே
௠ୀଵ          (18) 

By normalizing: 

𝐻௡ =
ି ∑ ௉(௠) ௟௢௚మ ௉(௠)ಿ

೘సభ

௟௢௚మ ே
         (19) 

Where N represents the total number of frequency points. 
In the denominator, log2N is the maximum spectral 

entropy of white noise, uniformly distributed in the 
frequency domain. 

If a time-frequency power spectrogram 𝑆(𝑡, 𝑓) is 
known, then the probability distribution becomes: 

𝑃(𝑚) =
∑ ௌ(௧,௠)೟

∑ ∑ ௌ(௧,௙)೟೑
           (20) 

Spectral entropy is still given by Eq. (18). 

To calculate instantaneous spectral entropy from a 
time-frequency power spectrogram 𝑆(𝑡, 𝑓), the 
probability distribution at time t is: 

𝑃(𝑡, 𝑚) =
ௌ(௧,௠)

∑ ௌ(௧,௙)೑
           (21) 

Thus, the spectral entropy at time t is given by the 
expression: 

𝐻(𝑡) = − ∑ 𝑃(𝑡, 𝑚) 𝑙𝑜𝑔ଶ 𝑃(𝑡, 𝑚)ே
௠ୀଵ          (22) 

 

3. Application Case  

To study its effectiveness, the proposed approach is 
applied on a bearing dataset obtained from the Case 
Western Reserve University (CWRU) Bearing Data 
Center. This choice is motivated by its wide use in the 
literature for the validation of new algorithms. To date, it 
has become a reference in the field and hundreds of 
articles based on its data have been published. This is why 
our results can be reproducible and therefore verifiable. 

 

2.5. Data description 

The CWRU data collection contains normal (healthy) 
and faulty bearings vibration signals. The faulty ones have 
defects located at the ball, inner race, and outer race. For 
each type, there are three fault diameters, 0.18 mm, 0.36 
mm, and 0.53 mm, respectively. Thus, there are 10 fault 
conditions (classes), to be considered in this dataset, as 
given in Table 1. The raw signals are recorded in Matlab 
files format (xxx.mat) in which names are defined by 
three digits. The selected ones for our work have a 
sampling frequency of 48 kHz and are classified 
according to four load conditions (0, 1, 2, and 3). Each file 
contains two signals issued from the Drive End (DE) and 
Fan End (FE) bearings.  
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Table 1. The 48 kHz selected vibration signals files. 

Health condition Classes (Labels) Fault diameter [mm] Motor load (HP) Vs. File names 
   0 1 2 3 

Inner race fault  

IR07 0.18 109 110 111 112 

IR14 0.36 173 175 176 177 

IR21 0.53 213 214 215 217 

Outer race fault Centred 

OR07 0.18 135 136 137 138 

OR14 0.36 201 202 203 204 

OR21 0.53 238 239 240 241 

Ball fault 

BA07 0.18 122 123 124 125 

BA14 0.36 189 190 191 192 

BA21 0.53 226 227 228 229 

Healthy (Normal) HE00 / 097 098 099 100 

 

The details of the experimental environment and the 
corresponding data are well described in [34]. 

The selected data set covers 40 scenarios relating to the 
ten fault conditions considered (10 classes described 
above). By adding the two signals relating to the 
measurement points (DE and FE of each scenario), we 
obtain 80 signals to be processed as described in the 
classification scheme. 

 

2.6. Dataset organization 

The implementation of the approach begins with the 
preparation of the data sets. In this step, we proceeded to 
oversample the data to guarantee the dimensional 
homogeneity of the classes. It is a form of data 
augmentation used in deep learning. Then, targets from 
each class of the obtained dataset are divided randomly 
into training and testing partitions (sets). During the 
training stage, the network divides the data into mini-
batches. To make all signals have the same length in the 
same mini-batch it pads or truncates them. This padding 
or truncating operation is very sensitive and can affect 
network performance because it can misinterpret a signal 
based on the added or removed information. 

 

4. Results and Discussion 

Throughout this study, two criteria, ranked in order, 
are used for performance evaluation. The first is naturally 
the average classification rate (accuracy) deduced from 
the confusion matrices. The higher it is, the better the 
performance. The second criterion is the computational 

time. The lower it is, the better the performance. However, 
the latter is used only for information purposes, as a 
complementary argument for the optimal choice of 
classification hyperparameters. This restriction is mainly 
caused by its strong dependence on the hardware 
configuration used consisting of a single CPU: Intel Core 
i7-3632QM, 2.20 GHz, which may therefore limit the 
generalization of the results. 

All the obtained results are grouped into two main 
categories. The first contains classifications based on data 
in the form of raw vibration signal frames, introduced at 
the input layer of the network. The second groups together 
classifications based on two time-frequency moment 
features manually extracted beforehand from signal 
frames and then introduced at the input layer of the 
network. 

 

2.7. Classification with LSTM using raw signals 

To reduce excessive calculation time, the basic 
ULSTM architecture was used to optimize the 
hyperparameters of the classification process. For the 
same reasons, the number of “Max Epochs” is limited to 
5. Among the training options specified for the classifier 
is the “mini-batch size” set to 32, which instructs the 
network to examine 32 training signals at a time. The 
“initial learning rate” is set to 0.01 to promote an 
accelerated training process. The “gradient threshold” is 
taken equal to 1, for stability of the training process by 
preventing too large gradients. Then the choice was made 
on the adaptive momentum estimation (Adam) solver, 
because it is more suitable for recurrent neural networks 
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(LSTM) than the Stochastic Gradient Descent Momentum 
(SGDM) solver, as specified in [35]. For training and 
testing, there are the same number of signals in each class. 
However, this number depends on frame analysis length, 
as shown in Table 2. To have reliable experimental 
results, a random selection strategy is applied to the 
selection of samples (training and testing). 

Before considering using each of the four LSTM 
network architectures, it is best to understand the 
decisions that must be made during its construction, in 
particular how to choose certain classification parameters. 
The latter must first be adjusted to specific values, to 
allow the classifier to achieve the right performance. 
However, in the literature, there are not yet clearly 
established rules or recommendations relating to the fixed 
choices of these values. Unfortunately, studies including 
even partial optimization of hyperparameters as in [27] 
are rare. Moreover, such optimizations will likely require 
a separate study. It therefore seems more interesting to 
first carry out a set of tests allowing certain parameters of 
the LSTM classifier to be optimized. Thus, a process of 
optimizing the frame length, the mini-batch size, and the 
initial learning rate was initiated. 

 

Table 2. Distribution of training and testing data subsets 
according to frame length. 

Frame length 

(Samples) 

Training set 

(Frames) 

Testing set 

(Frames) 

2048 1481 165 

1024 2963 329 

512 5931 659 

256 11864 1318 

128 23733 2637 

64 47473 5275 

 

4.1.1. Frame length 

A frame length or sequence length specifies the 
partitioning of the signal into smaller segments to prevent 
the machine memory from being overwhelmed by 
examining too much data at once. The tested range of 
vibration signal frames fed to the LSTMs as input 
sequences with varying dimensions, between 64 and 1024 
samples. The classification results presented in Figure 4, 
show that the accuracy fluctuates between extreme values 
of 44% and 66%. This is due to the number of epochs 
initially set to only 5, to reduce the exorbitant computation 

times for epoch numbers greater than 100. However, it 
was found that the smaller the frame length, the longer the 
classification time. This counter-intuitive appearance is 
probably due to causes such as processing overhead, 
hidden state management, recursion loop, gradient 
update, etc. Fortunately, classification accuracy 
(performance) does not depend on computation time, 
which remains indicative. Thus, the value of 128 samples 
seems to be the best compromise, and will therefore be 
assigned to the sequence length parameter. 

 

 

Figure 4. Effect of frame length on accuracy for Number of 
Epochs = 5. 

 

4.1.2. Mini-batch size 

The batch size is a hyperparameter of the model 
execution. It corresponds to the number of samples in a 
batch. It influences the speed of training and the efficiency 
of the model. Assigning a small value to this parameter 
can lead to a noisier estimation of the gradients. This can 
be beneficial to escape local minima, but can also make 
training slower. While a large value allows it to use 
resources efficiently, but can make training less dynamic 
and cause generalization problems. The values tested for 
this parameter are 8, 12, 16, 20, 24, 28, 32 and 64. The 
classification results obtained in Figure 5 show that the 
corresponding accuracy values are close. The value of 24 
seems to be the best compromise because it corresponds 
to an acceptable number of iterations, and therefore to a 
relatively reduced classification time. 
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Figure 5. Accuracy versus mini batch size for Number of 
Epochs = 5. 

 

4.1.3. Initial learning rate 

It is used to compile the neural network model when a 
gradient descent optimizer trains it. It indicates the 
weights needed to be introduced in the reverse direction 
of the gradient, for a mini-batch. In our case, the Adam 
optimizer is used. The values tested for this 
hyperparameter are 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005 
and 0.0001. According to the results presented in Figure 
6, the value of 0.005 seems to be the best compromise. It 
is noted that the training diverges in the case of the 
extreme values of 0.1 and 0.0001. This is due either to 
significant changes in the weights or to the acceleration of 
the training, which causes an increase in the loss. 
 

 

Figure 6. Impact of learning rate on performance. 

 

4.1.4. Epochs number 

The number of epochs is also one of the key 
parameters that affect the training process and the final 
performance of the neural network. It affects both the 
speed and the quality of the training process. It influences 
both the learning curve and the generalization ability. One 
epoch means one pass through all the training samples.  

This important hyperparameter will not only be used 
like its predecessors for the evaluation of the performance 
of the basic ULSTM network but will also be extended to 
the rest of the architectures studied as shown in Figure 7, 
for comparison purposes. The values tested for the 
number of epochs are set to 5, 10, 15, 20, 30, 50, 75 and 
100. This choice is imposed by an enormous calculation 
time necessary for values greater than 100. 

In addition, as strongly indicated for deeper ULSTMs, 
a “Dropout” layer is recommended for each LSTM layer. 
This helps avoid overfitting, and will thus reduce the 
sensitivity to the specific weights of neurons. A value of 
0.2 (20%) is usually used. The performances of the 
different network-tested architectures are represented by 
the evolution of the accuracy obtained from the confusion 
matrices as a function of the epoch’s number.  

The curves clearly show that increasing the number of 
epochs further improves the classification. Hence the 
highest precision achieved for all the used architectures is 
estimated at 80 ± 3 %. It corresponds to the number of 
epochs limit set at 100. To hope to further improve the 
score for this scenario (input in the form of raw signals 
and the same hardware configuration used), we must 
expect an exponential increase in time Calculation. 
Moreover, for information purposes, the basic ULSTM 
took approximately 8.5 hours for 100 epochs. While the 
BLSTM network exceeds 19 hours under the same 
conditions. 

This seems logical since the BLSTM network 
processes data in both directions. The classification 
process therefore takes longer than that of the basic 
(unidirectional) ULSTM network. 
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Figure 7. Accuracy versus Epochs Number for all tested LSTM architectures: a) Basic ULSTM, b) Stacked2 ULSTM, c) 
Stacked3 ULSTM and d) BLSTM. 

 

2.8. LSTM classification based on time 
frequency moment features 

The last and most important part of the experiment 
conducted in this paper was to use manual feature 
extraction hoping to improve the performance of the 
LSTM model in bearing fault detection and classification. 
The objective is to explore the effectiveness of the model 
and possible improvements in terms of precision and 
calculation time. To decide on the choice of features to 
extract, this study referred to the work of other 
researchers, notably those of Grzegorz Kłosowski & al. 
[36]. 

Therefore, feature extraction is based on the use of the 
short-term Fourier transform. It consists of converting the 
vibration signals relating to each class into spectrograms. 
Then, the time-frequency images are again converted into 
two vectors, namely instantaneous frequency and spectral 
entropy. The latter are subsequently intended for training 
LSTM networks. However, initially, they have very 
different averages. Furthermore, the instantaneous 

average frequency may be too high for the LSTM to learn 
effectively. It is therefore imperative to standardize the 
training and test sets, through a normalization called Z-
Score. 

 

4.1.5. Optimal sequence length 

In this second part of the study, the classification is 
based on user-defined characteristics. Thus, the choice of 
the nature and number of attributes necessary for the input 
sequence potentially determines the result and the 
accuracy of the classification. If the choice of the duo 
composed of the instantaneous frequency and the spectral 
entropy initially fixed the nature of the characteristics. All 
that remains is to determine the optimal signal analysis 
frame length on which the feature extraction process will 
be applied. The analysis frame length values tested are 
128, 256, 512, 1024, and 2048 samples, as shown in 
Figure 8. This choice is dictated in part, by the sizes of the 
segmented training and testing data sets. 
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Figure 8. Accuracy versus sequence length for basic ULSTM. 

 

The results show that for a value of the number of 
epochs set to 100, the classification rate relating to 

training is worth 99%. While that of the test, they 
correspond to 89%. This 10% gap clearly shows a data-
overfitting problem. The strong point to remember is that 
the precision increases with the length of the analysis 
frame, and advantageously this improvement is also 
accompanied by a reduction in calculation time. In other 
words, the value of 2048 samples corresponds well to the 
optimal analysis frame length adopted. 

 

4.1.6. Accuracy improvement 

To supervise the classification process, it is wise to 
vary the number of epochs. Since the calculation times are 
short compared to those of the first part of the study, the 
maximum value of the number of epochs is doubled. 
Thus, the range of values tested for this parameter is 10, 
20, 30, 50, 75, 100, 150, and 200, as shown in Figure 9. 

 

 

Figure 9. Accuracy versus Epochs Number for the four tested LSTM architectures: a) Basic ULSTM, b) Stacked2 ULSTM, c) 
Stacked3 ULSTM and d) BLSTM. 

 



Science, Engineering and Technology  Vol. 4, No. 2, pp. 24-38 

 

 

35 

As expected, the results clearly show that increasing 
the number of epochs further improves the classification. 
However, we also know that this is not a norm. Indeed, 
the problem of data overfitting appeared from the value of 
50. Beyond that, we note an increase in the training 
accuracy which reaches 100%, while that of the test 
remains fluctuating around 85%. In the same figure, we 
also notice that the calculation time increases in a 
practically linear manner. This suggests that to hope for 
an improvement, it is necessary to carry out more tests on 
other parameters or probably to first pre-process the 
signals from the database considered, which are known to 
be noisy. 

 

2.9. Summary of key points 

The results clearly show that the classification 
improves significantly with increasing number of epochs. 
However, this is not the rule. The problem of data 
overfitting can arise at any time. This is why it is 
necessary to carry out tests with maximum values and 
then search for the optimal values, which must remain 
constant for subsequent tests. 

The two classification schemes under study were 
successfully applied to the four selected LSTM network 
architecture models. However, their modes of application 
have followed different directions. Indeed, in the first 
classification case, the frame of the raw vibration signal is 
not only long but also noisy. The result is less efficient 
classification accompanied by costly computational time. 
In the second scenario, the input sequence is relatively 
short and denoised thanks to the applied Fourier 
transformation processes. Thus, classification 
performance is maximum crowned by potentially reduced 
calculation time. While it exceeds 19 hours in the case of 
classification based on raw signals, it is of the order of 23 
minutes for the worst case in the classification based on 
manual extraction of time-frequency features. 

In the case of classification based on time-frequency 
moment characteristics, the appearance of the training 
progression and loss curves in Figure 10 confirms that the 
model completely converges in only about 50 epochs, 
which is rather fast for an LSTM and the results can be 
considered impressive. In conclusion, it can be said that 
the LSTM network is considered effective for the 
detection and classification of anomalies in data from 
vibration signals. 

 

Figure 10. Training progress and loss curves respectively: a) & c) for Basic ULSTM & BLSTM and b) & d) for Stacked2 & 
Stacked3 ULSTMs. 
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Across many variations of LSTMs networks, bearing 
faults have been successfully classified both with input 
data as raw signals and with others introduced as 
previously and manually extracted feature vectors. 
Certainly, the performances of the classifications carried 
out are different. Nevertheless, LSTM networks deserve 
to be recognized, in agreement with the work of Verner 
[37], as having many advantages. One can cite, among 
others, the possibility of storing information over a large 
number of steps, the possibility of managing noise, the 
possibility of easily processing time series of variable 
lengths, the possibility of managing very long sequences 
and the ability to parallelize and accelerate calculations 
using a multitude of CPUs and GPUs. 

As for the drawbacks illustrated mainly by the loss of 
effectiveness in certain situations increased by a fairly 
long training time. In our case, when the input data are 
frames of raw vibration signals, the moderate 
performance is a good illustration. Nevertheless, Reimers 
and Gurevych [38] recommend that these limitations can 
be overcome, possibly by making modifications relating 
to the size of a hidden state, to the number of LSTM layers 
in the stacked LSTM model, to the algorithm of 
optimization, on the method and rate of variational 
dropout regularization technique and LSTM architectures 
with integration layer, stacked BLSTM, etc. 

 

5. Conclusion 

In this paper, different variants of LSTM networks are 
proposed for bearing fault diagnosis. Thus, four different 
types of architectures were successfully tested. This 
method appears promising and has relatively low 
computational costs because it can be executed online on 
machines with limited processing power, as part of 
condition-based maintenance. This advantage increases 
its industrial implication and its practical applications in 
the context of condition-based maintenance. In addition, 
and compared to traditional methods, it can use raw 
vibration signals as input to the classifier without any pre-
processing beforehand. Unfortunately, in such cases and 
within the limits of this study, training the LSTM network 
results in modest classification accuracy and quite long 
computational times. One of the solutions to the problem 
demonstrated during this study consists of using time-
frequency-moment features that can be extracted 
manually beforehand, to be sent to the input of the 

classifier. Training the network using these two features 
significantly improves classification performance and 
reduces training time. Alternatively, the need to consider 
in perspective the testing of many other hyperparameters 
and other architectural models capable of improving the 
performance in question. 
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