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Abstract 

Radial kernel interpolation is an advanced method in approximation theory for the construction of higher order 
accurate interpolants for scattered data up to higher dimensional spaces. In this manuscript, we formulate a radial kernel 
collocation approach for solving problems involving the Volterra integro-differential equations using two radial kernels: 
The Generalized Multi-quadrics and the linear Laguerre-Gaussians. This was achieved by simplifying the Volterra 
integral problem's solution to an algebraic system of equations. The impact of the shape parameter present in every 
kernel on the method's accuracy is examined and found to be significant. Two examples were used to illustrate the 
process; the numerical results are shown as tables and graphs. MATLAB 2018a was employed in the process. 
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1. Introduction 

Integro-differential equations (IDEs) have emerged as 
a powerful tool for modeling various phenomena in 
diverse fields, including physics, engineering, biology, 
and economics such as population dynamics and chemical 
reactions, describing wave propagation and heat transfer, 
analyzing electrical circuits and mechanical systems, 
designing control systems and signal processing 
algorithms, modeling epidemic spread and 
pharmacokinetics, modeling economic growth and 
financial markets [1], and so on.  These classes of 
differential equations have proven to be a versatile tool for 
modeling complex phenomena across various disciplines. 
Their applications continue to expand, driven by advances 
in computational power and numerical methods. This 
demonstrates the significance of IDEs in understanding 
and analyzing real-world problems, highlighting their 
potential for future research and applications [2], [3]. 

A Galerkin meshless approach based on MLS was 
applied to solve logarithmic and weakly singular 

boundary integral equations. To solve particular integro-
differential models, the authors of [4] have looked at two 
different RBF collocation techniques; a boundary-type 
RBF collocation technique and a domain-type RBF 
collocation method. The discrete Galerkin technique 
approximates the solution by using the MLS scheme built 
on dispersed nodal points [5]. 

In a variable-step size implementation, collocation 
methods are particularly useful because they yield an 
approximation of the equation's solution over the entire 
integration interval. In fact, by evaluating the collocation 
polynomial, one can easily recover past values that have 
been lost when step size is changed. Other desirable 
properties of collocation methods include their high order 
of convergence, strong stability properties, and flexibility 
[6]. In fact, if some information about the exact solution's 
behavior is known, one can choose the collocation 
functions to better follow that behavior, producing mixed 
collocation methods, for instance, in the case of VIEs, see 
[7], and in the case of ordinary differential equations 
(ODEs), see [8]. It's also important to note that collocation 
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methods have significant theoretical implications. For 
example, many numerical methods are challenging to 
analyze as discrete schemes, but when recast as 
collocation-based methods, their analysis can be done 
elegantly and reasonably simpler. And one notable 
disadvantage of one-step collocation techniques is that, 
when they are applied to stiff issues, they experience the 
order reduction phenomena [9].  

The degree of convergence is not constant. For 
example, when using Runge-Kutta methods based on s-
stage collocation on Gauss-Legendre collocation points, 
the order in the grid points is p = 2s, but for stiff problems, 
it degenerates to p = s, given that the order is currently 
internal. Two-step collocation techniques, which have a 
high uniform order on the whole integration interval, 
satisfactorily address this issue [10]. Collocation methods 
are typically more expensive than other groups of 
procedures when it comes to computational cost. In 
actuality, the solution of a nonlinear system of dimension 
m is necessary for a collocation method with m 
collocation parameters at each time-step. Multistep 
collocation techniques, which raise the order of 
convergence at the same computational cost as one-step 
ones, can be used to overcome this disadvantage [4], [11]. 

 Applying a collocation approach to an integral 
equation necessitates computing several integrals; hence, 
appropriate quadrature procedures are required to finish 
the discretization, resulting in an extra error. Finally, there 
is still a need for a trustworthy error estimate for 
collocation techniques for integral equations. Some 
progress has been made in this area (see the references in 
[8], [12]), but a lot more work has to be done. The primary 
findings of one-step collocation techniques are compiled 
in monograph [13], which were initially documented in 
the literature. In an effort to increase the order of 
convergence of classical one-step collocation methods 
without incurring additional computational costs at each 
time step and to simultaneously obtain highly stable 
methods, we have recently proposed radial kernels 
collocation methods [14] for solving Fredholm integro-
differential equations, in which the approximate solution 
in a fixed number of previous time steps.  

Consequently, in order to compute integrals in the 
method that is provided, which is based on the composite 
Gauss-Legendre quadrature formula, we need an 
appropriate integration rule. The researches method 

simplifies the Volterra integral problem's solution to an 
algebraic equation system's solution. This new method is 
meshless because it doesn't require any domain elements. 
The method is more adaptable for most classes of Volterra 
integral equations and does not increase the difficulty for 
higher dimensional issues because of the straightforward 
adaptation of the radial kernels’ collocation method. We 
also investigate the correctness and efficiency of the 
proposed method in some Volterra integral equations by 
way of implementation using examples [2], [15]. 

The proposed research introduces a novel 
computational approach by utilizing radial kernels within 
the collocation method framework to solve Volterra 
integro-differential equations (VIDEs). While traditional 
numerical methods such as finite difference and spectral 
methods have been employed to tackle VIDEs, their 
limitations in handling complex and non-smooth solutions 
have prompted the need for more adaptive techniques. 
The radial kernels collocation method offers greater 
potentials in terms of flexibility, accuracy, and efficiency 
in approximating the solutions of nonlinear and higher-
dimensional VIDEs, making it particularly suitable for 
problems with irregular domains. This study integrates the 
radial basis functions with collocation methods to 
overcome the challenges associated with traditional 
techniques, providing a more robust tool for both 
theoretical analysis and practical applications in diverse 
scientific fields. 

 

2. Preliminaries 

As per [16], Volterra examined the genetic factors 
while examining a population expansion model. The 
investigation produced a series of equations in which the 
integral and differential operators coexisted in a single 
equation. If all of the integration limits are constant, the 
peculiar kind of equations is known as an integro-
differential equation, or more specifically, a Volterra 
integro-differential equation [17] and [18]. The following 

is a 𝑘௧௛ order linear Volterra integro-differential equation: 

෍ 𝑃௡(𝑥)𝑢(௡)(𝑥)

௞

௡ୀ଴

= 𝑓(𝑥) + 𝜆 න 𝐾(𝑥, 𝑡)
௫

௔

𝑢(𝑡)𝑑𝑡,       (1) 

where 𝑢(௡)(𝑥) =
ௗ೙௨

ௗ௫೙ . It is necessary to define initial 

conditions 𝑢(0), 𝑢ᇱ(0), . . ., 𝑢(௡ିଵ)(0) for the 
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determination of the particular solution 𝑢(𝑥) of the 
Volterra [19]. 

The radial kernels used for implementation in this 
work and their derivatives are defined as follows [19], 
[20]: 

 Generalized Multiquadric: 

𝜑(𝑟) = ((𝜀𝑟)ଶ + 1)ହ/ଶ, 
𝜑ᇱ(𝑟) = 5𝜀ଶ𝑟((𝜀𝑟)ଶ + 1)ଷ/ଶ,  

𝜑ᇱᇱ(𝑟) = 15𝜀ଶ((𝜀𝑟)ଶ + 1)
భ

మ((𝜀𝑟)ଶ + 1)ଷ + 3(𝜀𝑟)ଶ),  
 

 Linear Laguerre-Gaussians: 

𝜑(𝑟) = 𝑒ି(ఌ௥)మ
(2 − (𝜀𝑟)ଶ),    

డ

డ௫
𝜑(𝑟) = 2𝜀ଶ𝑟𝑒ି(ఌ௥)మ

((𝜀𝑟)ଶ − 3),  
డమ

డ௬మ 𝜑(𝑟) = 2𝜀ଶ𝑒ି(ఌ௥)మ
((𝜀𝑟)ସ − 9)(𝜀𝑟)ଶ + 3).  

 
 

2.1. Interpolation by Radial Kernels 

In many applications, the most used kernels are 
translational invariant or radial. To be precise, there exist 

a univariate function 𝜑 ∶ ℝௗ → ℝ such that [21]. 

𝐾(𝑥, 𝑦) = 𝜑(𝑥 − 𝑦),   𝑥, 𝑦 ∈ Ω  or  𝜑 ∶  ℝ ≥ 0 → ℝ 

such that, 

𝐾(𝑥, 𝑦) =  𝜑(‖𝑥 − 𝑦‖ଶ), 𝑥, 𝑦 ∈  Ω  

where ‖∙‖ denotes the Euclidean norm on ℝௗ. Radial 
kernels, which also take the name Radial Basis Functions 
(RBFs), are usually defined with the parameter 𝜀 > 0, 
which is called the shape parameter and is employed to 
control the scale of the kernel [21], i.e., 

𝐾(𝑥, 𝑦)  =  𝜑(𝜀‖𝑥 − 𝑦‖ଶ). 

Rather than using simple distance matrices 𝐵௞(𝑥) =

‖𝑥 − 𝑥௞‖ଶ, radial kernels expansion can be used to solve 

the interpolation problem in ℝௗ by assuming  

𝑠௙(𝑥) = ෍ 𝑐௞𝜑(‖𝑥 − 𝑥௞‖ଶ)

ே

௞ୀଵ

                                           (2) 

The coefficients 𝑐௞ in (2) are found by enforcing the 
interpolation conditions, and thus solving the linear 
system [19], 

൦

𝜑(‖𝑥ଵ − 𝑥ଵ‖ଶ) 𝜑(‖𝑥ଵ − 𝑥ଶ‖ଶ) ⋯ 𝜑(‖𝑥ଵ − 𝑥ே‖ଶ)

𝜑(‖𝑥ଶ − 𝑥ଵ‖ଶ)
⋮

𝜑(‖𝑥ଶ − 𝑥ଶ‖ଶ)
⋮

 
⋯
⋱

𝜑(‖𝑥ଶ − 𝑥ே‖ଶ)
⋮

𝜑(‖𝑥ே − 𝑥ଵ‖ଶ) 𝜑(‖𝑥ே − 𝑥ଶ‖ଶ) ⋯ 𝜑(‖𝑥ே − 𝑥ே‖ଶ)

൪ ൦

𝑐ଵ 
𝑐ଶ

⋮
𝑐ே

൪ 

=

⎣
⎢
⎢
⎡
𝑓(𝑥ଵ)

 
𝑓(𝑥ଶ)

⋮
𝑓(𝑥ே)⎦

⎥
⎥
⎤

                                       (3) 

Note that this system will have a unique solution 
whenever the system matrix 𝐴 in (3) above [19]. 
 

𝐴 = ൦

𝜑(‖𝑥ଵ − 𝑥ଵ‖ଶ) 𝜑(‖𝑥ଵ − 𝑥ଶ‖ଶ) ⋯ 𝜑(‖𝑥ଵ − 𝑥ே‖ଶ)

𝜑(‖𝑥ଶ − 𝑥ଵ‖ଶ)
⋮

𝜑(‖𝑥ଶ − 𝑥ଶ‖ଶ)
⋮

 
⋯
⋱

𝜑(‖𝑥ଶ − 𝑥ே‖ଶ)
⋮

𝜑(‖𝑥ே − 𝑥ଵ‖ଶ) 𝜑(‖𝑥ே − 𝑥ଶ‖ଶ) ⋯ 𝜑(‖𝑥ே − 𝑥ே‖ଶ)

൪ 

 

is non-singular and therefore, the choice of a kernel for 
which the system matrix is non-singular is also important. 
A full characterization of the class of all kernels that 
generate a non-singular system matrix for any set 𝑋 =

 {𝑥ଵ , . . . , 𝑥ே} of distinct data sites is not an easy task. We 
refer readers to [19] for the most commonly used ones. 
The invertibility conditions of the method could be fully 
gotten from the same reference above. 

We assume that the solution of the 𝑘௧௛ order Volterra 
integro-differential equation (1) can be expressed in the 
form of the radial kernel interpolant  

𝑢(𝑥) ≈ 𝑢෤(𝑥) = ෍ 𝛼௜𝜑(𝜀‖𝑥 − 𝑥௜‖ଶ)

௠

௜ୀଵ

                            (4) 

 𝑚 > 𝑘  and  𝑥 ∈ 𝑅                                                            

where 𝜑 is a positive definite kernel [6], [14]. The 
Laguerre Gaussians and Generalized Multi-quadrics 
kernels will be used for this investigation. 

We first of all select 𝑚 − 𝑘 collocation points from the 
𝑚 data sites 𝑥ଵ, … , 𝑥௠.  Let 𝛼 = ⌈𝑘/2⌉ and 𝛽 = ⌊𝑘/2⌋, 
and so we use 𝑥ఈ , … , 𝑥௠ିఉ as the 𝑚 − 𝑘 collocation 
points. When we substitute the collocation points into 
equation (1), we obtain 

෍ 𝑃௡(𝑥௝)𝑢(௡)൫𝑥௝൯

௞

௡ୀ଴

= 𝑓൫𝑥௝൯ + 𝜆 න 𝐾൫𝑥௝ , 𝑡൯
௫ೕ

௔

𝑢(𝑡)𝑑𝑡,     𝑗

= 𝛼 … 𝑚 − 𝛽.                                          (5) 

We now substitute the approximate solution (4) into 
equation (5) to obtain 
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෍ 𝑃௡൫𝑥௝൯ ൥෍ 𝑐௜𝜑(௡) ቀ𝜀ฮ𝑥௝ − 𝑥௜ฮ
ଶ

ቁ

௠

௜ୀଵ

൩

௞

௡ୀ଴

 

= 𝑓൫𝑥௝൯ + 𝜆 න 𝐾൫𝑥௝ , 𝑡൯
௕

௔

෍ 𝑐௜𝜑(𝜀‖𝑡 − 𝑥௜‖ଶ)

௠

௜ୀଵ

𝑑𝑡     

𝑗 = 𝛼, … , 𝑚 − 𝛽. 

Re-arranging these yields 

෍ 𝑐௜ ൝෍ 𝑃௡൫𝑥௝൯𝜑(௡) ቀ𝜀ฮ𝑥௝ − 𝑥௜ฮ
ଶ

ቁ

௞

௡ୀ଴

௠

௜ୀଵ

− 𝜆 න 𝐾൫𝑥௝ , 𝑡൯
௕

௔

𝜑(𝜀‖𝑡 − 𝑥௜‖ଶ)𝑑𝑡ൡ

= 𝑓൫𝑥௝൯                                                     (6) 

The integral in equation (6) is evaluated using a five-
point Gauss-Legendre quadrature formula on the interval 
[−1, 1] as [22] and [23]. 

න 𝑔(𝑥)

ଵ

ିଵ

𝑑𝑥 = ෍ 𝑤௜𝑔(𝑝௜)

ହ

௜ୀଵ

                                                (7) 

where the 𝑤௜ ′𝑠 are the weights and the 𝑝௜ ′𝑠 are the 
integration points. Here:  

𝑤ଵ = 𝑤ହ =  0.23692688, 

𝑤ଶ = 𝑤ସ = 0.47862867, 

𝑤ଷ = 0.56888888, and 

𝑝ଵ = −0.90617984,  

𝑝ଶ = −0.53846931,  

𝑝ଷ = 0.00000000, 

𝑝ହ = −𝑝ଵ, 𝑝ସ = −𝑝ଶ.  
 

To apply the rule over an arbitrary interval [𝑎, 𝑏], we 
use the change of variable 

𝑡 =
𝑎 + 𝑏

2
+

𝑎 − 𝑏

2
𝑥  and  𝑑𝑡 =

𝑎 − 𝑏

2
𝑑𝑥. 

The 𝑚 coefficients 𝑐ଵ, … , 𝑐௠ of the approximate will 
require solving a system of 𝑚 linear equations.   Equation 
(6) gives 𝑚 − 𝑘 linear equations in 𝑐ଵ, … , 𝑐௠ while the 
remaining 𝑘 equations are obtained by evaluating the 
approximate solution at the initial conditions [24]. This 
gives  

𝑢෤(௡)(𝑥଴) = ෍ 𝑐௜𝜑(௡)(𝜀‖𝑥଴ − 𝑥௜‖)

௡

௜ୀଵ

= 𝜌௡                     (8)  

 𝑛 = 0 , … , 𝑘 − 1                      

Equations (6) and (8) together yield a system of 𝑛 
equations in 𝑚 unknowns. The collocation method for the 
solution of Fredholm integro-differential equation will be 
implemented using the linear Laguerre-Gaussian and the 
generalized multi-quadrics [24]. 

 

2.2. Smoothness Requirements for the Kernels 

According to [25], The MQ and the LLG kernels are 
infinitely differentiable, meaning they requires the 
underlying function 𝑢(𝑥), which is the solution to the 
Volterra integro-differential equation, to be infinitely 
smooth in theory. But in practice, it is enough if the 
solution 𝑢(𝑥) belongs to a Sobolev space 𝑊௞,௣, where the 
solution has continuous partial derivatives up to a certain 
order 𝑘. A smoothness of 𝑘 ≥ 2 (i.e., the function has at 
least two continuous derivatives) is sufficient for 
convergence. 

The shape parameter 𝜀 can be tuned to adjust the 
smoothness requirements, large shape parameter (i.e., 𝜀 >

1) results in a flat MQ kernel, making the method better 
suited for smooth functions, but it can reduce accuracy in 
regions where the function has steep gradients or irregular 
behavior. A small shape parameter (i.e., 𝜀 < 1) make the 
kernel more localized and sensitive to irregularities in the 
solution, allowing the method to handle functions with 
less smoothness. However, this could lead to ill-
conditioning in the system of equations, which needs to 
be handled carefully [26]. 

Convergence: The error estimate for the MQ and LLG 
method typically take the form 

‖𝑢(𝑥) − 𝑢௡(𝑥)‖ ≤ 𝐶ℎఓ 

where 𝑢௡(𝑥) is the numerical solution, ℎ is the fill 
distance (the spacing between collocation points), and 𝜇 
depends on the smoothness of 𝑢(𝑥) and the shape 
parameter 𝜀. The smoother the solution and the better the 
choice of 𝜀, the higher the convergence rate 𝜇. 

Reducing Smoothness Requirements to Obtain 
Convergence for both the MQ and LLG kernels while still 
achieving convergence, the following approaches was 
explored; 
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Adaptive Shape Parameter Selection for MQ; choosing 
a smaller shape parameter can improve the method's 
ability to approximate fewer smooth functions. Similarly, 
for LLG, adjusting 𝜀 and the degree 𝑘 of the Laguerre 
polynomial can allow the method to approximate fewer 
smooth solutions while maintaining good convergence. 
Other approaches like Mixed Radial Kernels, Localized 
Refinement are also possible. It is worth to note that, the 
domain of dependence of MQ is global. This means that 
they are non-compactly supported functions; they do not 
vanish at any finite distance from the center while 
Laguerre Gaussians are compactly supported in practice 

(though not strictly), due to the Gaussian term 𝑒(ఌ௥)మ
(2 −

(𝜀𝑟)ଶ), which causes rapid decay as 𝜀 increases [15]. 

 

2.3. Effects of Increasing Collocation Points. 

Improved accuracy and convergence as the solution is 
better approximated. Increasing the number of collocation 
points leads to a finer discretization of the problem 
domain, reducing the fill distance ℎ. This improves the 
accuracy and the rate convergence of the method as the 
collocation points more densely cover the domain, leading 
to a better approximation of the solution. Though, the 
system becomes open to ill-conditioning and numerical 
instability if the system becomes poorly scaled. On othe 
considerations such as what will be the corresponding 
impact if the kernel is weakly singular or unbounded, (see 
[27], [28] and [29]).  

 

3. Numerical Results 

Problem 1: Consider the linear Volterra integro-
differential equation:  

𝑢(௜௩)(𝑥) = 𝑥(1 + 𝑒௫) + 3𝑒௫ + 𝑢(𝑥) − න 𝑢(𝑦)
௫

଴

𝑑𝑦    (9) 

subject to the boundary conditions: 

𝑢(0) = 1, 𝑢ᇱ(0) = 1, 𝑢(1) = 1 + 𝑒, and  𝑢ᇱ(1) = 2𝑒 
on the interval [0,1]. The exact solution is 𝑢(𝑥) = 1 +

𝑥𝑒௫ and 

Problem 2: Consider the linear Volterra integro-
differential equation taken from [26]: 

𝑢(ᇱᇱ)(𝑥) = −𝑥 −
௫య

଺
+ ∫ (𝑥 − 𝑦)𝑢(𝑦)

௫

଴
𝑑𝑦              (10)  

subject to the boundary conditions: 

𝑢(0) = 0, 𝑢ᇱ(0) = 2, 𝑢(1) = 1 + sin 1, and  𝑢ᇱ(1) =

1 + cos 1 on the interval [0,1]. The exact solution is 
𝑢(𝑥) = 𝑥 + sin 𝑥 [26]. Here, 𝑘 = 4, 𝛼 = 𝛽 = 2, 𝑎 = 0, 

that is 𝛼 = ቒ
ସ

ଶ
ቓ = 2 and 𝛽 = ቔ

ସ

ଶ
ቕ = 2 on the interval [0, 1]. 

These problems were solved for 𝑚 =  17 and 23 
respectively. Thus, the collocation points will be 
𝑥ଶ, … 𝑥ଵ଴, 𝑥ଶ, … , 𝑥ଵ଺ and 𝑥ଶ, … , 𝑥ଶଶ respectively. We use 
linear Laguerre-Gaussians, and generalized Multiquadrics 
kernel. 

 
Figure 1. Numerical and Exact Solution for problem 1, and 

Behaviour of Shape Parameter with respect to (c) Error and (d) 
Condition Number, using Linear Laguerre-Gaussian Kernel. 

 
Figure 2. Numerical and Exact Solution for problem 2, and 

Behaviour of Shape Parameter with respect to (c) Error and (d) 
Condition Number, using Generalized Multi-Quadrics Kernel.

(d) (c) 

(b) (a) 

(d) (c) 

(b) (a) 
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Table 1. Numerical Solution and Absolute Error for the Problem 1, using Linear Laguerre-Gaussians and Generalized Multi-
quadrics (𝒎 = 𝟏𝟕). 

Points 𝒙𝒊 
Exact 

Solution 
Approximate Solution 

(LLG) 
Absolute Error (LLG) 

Approximate 
Solution (GMQ) 

Absolute Error 
(GMQ) 

1 -1 0.367879 0.367879 8.968316× 10ି଻ 0.367879 2.212018× 10ି଺ 
2 -7/8 0.416862 0.416862 2.7447000× 10ି଼ 0.416862 5.183214× 10ି଼ 
3 -6/8 0.472367 0.472367 3.655369× 10ି଻ 0.472367 8.563639× 10ି଼ 
4 -5/8 0.535261 0.535261 4.737887× 10ି଼ 0.535261 8.148962× 10ିଽ 
5 -4/8 0.606531 0.606531 6.810450× 10ି଼ 0.606531 1.080118× 10ି଻ 
6 -3/8 0.687289 0.687289 1.156636× 10ି଻ 0.687289 4.004509× 10ି଼ 
7 -2/8 0.778801 0.778801 6.596934× 10ି଼ 0.778801 7.288332× 10ି଼ 
8 -1/8 0.882497 0.882497 1.667250× 10ି଻ 0.882497 5.581526× 10ି଼ 
9 0 1.000000 1.000000 1.096705× 10ି଻ 1.000000 1.101389× 10ି଻ 
10 1/8 1.133148 1.133148 1.227157× 10ି଻ 1.133148 1.491695× 10ି଼ 
11 2/8 1.284025 1.284025 1.402587× 10ି଻ 1.284025 8.583456× 10ି଼ 
12 3/8 1.454991 1.454991 9.548872× 10ି଼ 1.454991 1.270210× 10ି଻ 
13 4/8 1.648721 1.648721 1.933080× 10ି଻ 1.648721 7.106465× 10ି଻ 
14 5/8 1.868246 1.868246 1.624123× 10ି଻ 1.868246 1.817695× 10ି଼ 
15 6/8 2.117000 2.117000 2.188568× 10ି଻ 2.117000 4.305514× 10ି଼ 
16 7/8 2.398875 2.398875 1.448256× 10ି଻ 2.398875 1.317918× 10ି଻ 
17 1 2.718279 2.718282 2.285417× 10ି଺ 2.718282 4.434408× 10ି଺ 

 

Table 1. Numerical Solution and Absolute Error for the Problem 2, using Linear Laguerre-Gaussians and Generalized Multi-
quadrics (𝒎 = 𝟐𝟑). 

Points 
𝒙𝒊 Exact 

Solution 
Approximate 

Solution (LLG) 
Absolute Error 

(LLG) 
Approximate 

Solution (GMQ) 
Absolute Error 

(GMQ) 
1 -1 0.367879 0.367879 2.164776× 10ି଻ 0.367879 2.444864× 10ି଻ 
2 -10/11 0.402890 0.402890 5.226292× 10ି଼ 0.402890 4.787868× 10ି଻ 
3 -9/11 0.441233 0.441233 2.639722× 10ି଻ 0.441233 3.658647× 10ି଻ 
4 -8/11 0.483225 0.483225 1.839251× 10ି଼ 0.483225 3.312609× 10ି଻ 
5 -7/11 0.529213 0.529213 1.995590× 10ି଻ 0.529213 4.529079× 10ି଻ 
6 -6/11 0.579578 0.579578 1.344108× 10ି଻ 0.579578 2.164504× 10ି଻ 
7 -5/11 0.634736 0.634736 2.766444× 10ି଻ 0.634736 3.771690× 10ି଻ 
8 -4/11 0.695144 0.695144 2.982010× 10ି଼ 0.695144 1.214471× 10ି଻ 
9 -3/11 0.761300 0.761300 2.000703× 10ି଻ 0.761300 1.009426× 10ି଻ 
10 -2/11 0.833753 0.833753 1.750247× 10ି଼ 0.833753 1.633778× 10ି଻ 
11 -1/11 0.913101 0.913101 6.388558× 10ି଼ 0.913101 7.196382× 10ି଼ 
12 0 1.000000 1.000000 3.329478× 10ି଼ 1.000000 3.230525× 10ି଼ 
13 1/11 1.095169 1.095169 7.330447× 10ି଼ 1.095169 3.552203× 10ି଻ 
14 2/11 1.199396 1.199396 2.137575× 10ି଼ 1.199396 1.905272× 10ି଻ 
15 3/11 1.313542 1.313542 1.016782× 10ି଼ 1.313542 3.051642× 10ି଻ 
16 4/11 1.438552 1.438551 9.354295× 10ି଼ 1.438551 6.030863× 10ି଻ 
17 5/11 1.575458 1.575457 9.003274× 10ି଼ 1.575457 5.254260× 10ି଻ 
18 6/11 1.725393 1.725392 5.534307× 10ି଼ 1.725392 2.355539× 10ି଻ 
19 7/11 1.889598 1.889597 9.345523× 10ି଼ 1.889597 6.415385× 10ି଻ 
20 8/11 2.069429 2.069429 2.162231× 10ି଼ 2.069429 2.921715× 10ି଻ 
21 9/11 2.266376 2.266375 4.565158× 10ି଼ 2.266375 7.227230× 10ି଻ 
22 10/11 2.482066 2.482065 2.223534× 10ି଻ 2.482065 5.529729× 10ି଻ 
23 1 2.718282 2.718282 4.995921× 10ିଽ 2.718282 4.538934× 10ି଻ 
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4. Discussion  

The results for the radial kernel collocation solution of 
problem 1 and problem 2 using linear Laguerre Gaussian 
and the generalized multi-quadrics for 𝑚 = 17 and  𝑚 =

23 are provided in Table 1 and Table 2 respectively. Other 
numerical results are display in form of graphs shown in 
Figure 1 and Figure 2. In Table 1 with 𝑚 = 17, we 
observed that the differences in absolute error for the two 
radial kernels are not much. However, the approximations 
using linear Laguerre Gaussian are generally more 
accurate than the approximation by generalized 
multiquadrics except at the origin where the generalized 
multiquadrics performs better. On a more general level, 
the approximation for 𝑚 = 17 was not very accurate 
compared to higher values.  It was also observed from 
graph of the behaviour of shape parameter against error 
and that of the shape parameter against the condition 
number of the system matrix in Figures 1 and 2 that, the 
error was more pronounced around the origin with small 
values of the shape parameter while the system matrix was 
badly conditioned at many points on the domain using 
Gaussian kernel for 𝑚 = 17. While for the linear 
Laguerre-Gaussian kernel, the error experience a shoot for 
values of 𝜀 between 0 and 0.4 and the system matrix was 
also badly conditioned but yet offer a good 
approximation. For linear Laguerre Gaussian the value of 
the shape parameter 𝜀 = 0.6 to 2 give the most accurate 
results while for the generalized multiquadrics 𝜀 = 0.25 
to 2 were the most suitable. 

 

5. Conclusion 

In order to solve the Volterra integro-differential 
equations for a better conditioned system and accuracy, 
the radial kernels collocation method was developed in 
this paper employing two distinct positive radial kernels. 
Two examples based on the suggested algorithm were 
used to demonstrate the efficacy of the approach. 
Additionally, the method's convergence was provided in 
relation to the shape parameter's behavior with respect to 
error and condition number. The findings demonstrate 
that, the proposed method is realistically dependable and 
consistent when compared to the other approaches such as 
the traditional methods. As a result, employing the radial 
kernels method to solve integro-differential equation 
problems improves accuracy rates, which is encouraged. 
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