www.setjournal.com

Optimized Dehydrogenation of Magnesium Hydride with Fe and Cu Additives

Oluwashina Philips Gbenebor, Abimbola Patricia Popoola

Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria, South Africa

Abstract

Solid state hydrogen storage using of MgH₂ has gained widespread attention because of its good reversible storage capacity. This metal hydride however slowly releases hydrogen at high temperatures ranging between 325 – 375 °C. An important feature required of MgH₂ is its ability to commence hydrogen release at a fast rate and reduced temperature. Transition metal-containing alloys/compounds having either Fe or Cu as the principal element have been used to improve the dissociation of hydrogen from MgH₂. Studies involving the use of each metal in its elemental form as an additive are minimal. This study investigated the catalytic effects of elemental Fe and Cu on the hydrogen release performance of MgH₂ for potential applications in transportation and power generation. It was observed that MgH₂/Fe had a better dehydrogenation performance; the temperature of onset of MgH₂/Fe and MgH₂/Cu dehydrogenation were 205, and 215 °C which were 98 and 88 °C lower than that for as-received MgH₂. The highest amount, 1.9 wt. % H₂ was released by MgH₂/Fe while 1.44 wt. % H₂ was released by MgH₂/Cu. The activation energy for dehydrogenation was reduced from 150.5 kJ/mol for as-received MgH₂ to 89.8 and 79.8 kJ/mol in MgH₂/Cu and MgH₂/Fe respectively. It took 18.8 min for as-received MgH₂ to commence dehydrogenation while that for MgH₂/Fe and MgH₂/Cu composites started from 12.2 and 13.4 min respectively. The in-situ formed Fe and Cu in MgH₂ after milling acted as active catalytic sites for its improved dehydrogenation with MgH₂/Fe behaving better.

Keywords: Hydrogen storage, Hydrogenation, Dehydrogenation, MgH₂/Cu, MgH₂/Fe

1. Introduction

One of the major issues that frequently debilitate the social and environmental aspects of every nation is the challenges of climate change [1], [2]. It is not farfetched that the rising rate of greenhouse gas emissions that occupy the atmosphere is deeply rooted in everyday human activities. Globally, it is a conventional assessment that the growth of any economy is profoundly beefed up by fossil fuel consumption for generation in the domestic, agricultural, and transportation sectors [3], [4], [5]. Leaders of nations have therefore been inundated with the task of striking a balance between economic growth and overreliance on fossil fuels for energy production, storage, and transportation. Clean energy is a prominent alternative where renewable resources are been exploited.

Renewable secondary energy such as hydrogen energy maintains a leading position in modern-day energy-inclined researches because its distribution and storage are eco-friendly in addition to its high energy content [6]. Successful hydrogen energy use can be achieved by ensuring a safe storage mode that will aid its effective transportation and consumption. Storage of hydrogen in the solid state with the use of metal hydride such as magnesium hydride (MgH₂) has been a promising technology because it possesses the capacity to store up to 7.6 wt. % H₂ and 110 kg/m³ density [7], [8]. The use of this metal hydride for solid state hydrogen storage, however, faces some difficulties in its

applications of which hydrogen release kinetics is a major one [9]. This has necessitated attempts to ensure that its dehydrogenation is enhanced via nanostructuring and the introduction of additives [10]. Desorption of hydrogen from MgH₂ is endothermic as the reaction requires the application of heat for its activation according to the reaction:

$$MgH_2 + heat \leftrightarrow Mg + H_2$$
 (i)

This process has been reported to occur between 325 – 375 °C [11], [12], [13], [14]. The reverse reaction – absorption can take place when hydrogen is no longer in use and it has to be stored in its combined solid state. An important feature required of MgH₂ is its ability to commence the release of hydrogen at a fast rate and reduced temperature. The energy needed to dissociate hydrogen from MgH₂ during this thermal event is often quantified in terms of activation energy. As low hydrogen desorption temperature connotes improved performance, the same can also be said about the activation energy - a reduced magnitude implies that less energy will be required to break the Mg - H bond [15].

Our previous review (including other related works) affirms that the use of transition metals or transition metal-based compounds/composites as additives is a practicable way of modifying the hydrogen storage performance of MgH₂ [16], [17]. A conventional way of doping MgH₂ with these additives is via high energy ball milling. This is often done to enhance improved metallurgical bonding (cold welding) between/among combining materials. High-energy ball milling has been reported to promote grain refinement, lower reaction activation energy, and reduced temperature for chemical reactions [18], [19]. Depending on the time allowed during ball milling (0.5 h \leq time \leq 12 h), an earlier review inferred that one of the following reactions would take place:

$$MgH_2 + A \rightarrow MgH_2 + A$$
 (ii)

$$MgH_2 + AB \rightarrow MgH_2 + AB$$
 (iii)

$$MgH_2 + AB \rightarrow MgB + AH_2$$
 (iv)

$$MgH_2 + AB \rightarrow \frac{1}{2}MgB_2 + \frac{1}{2}Mg + AH_2$$
 (v)

From the reactions above, A represents a transition metal; B could be one of hydrogen (H), carbon (C), oxygen (O), sulphur (S), or any group VII element in the periodic table. For simplicity, the reactions above only fit an elemental or a single transition metal-based

compound. Reactions (ii) and (iii) imply that each combining material may still exist after milling while (iv) and (v) suggest possible reactions that could take place after milling. These have been proven to facilitate the de-bonding of MgH₂ on the application of heat during dehydrogenation.

Transition metal-containing materials having either Fe or Cu as the principal element have been used to improve the dissociation of hydrogen from MgH₂. Density functional theory (DFT) and molecular dynamic (MD) simulations have proven that there lies a stable surface on doping MgH₂ with Cu [20]. This surface imparts stronger hydrogen adsorption effects than undoped MgH₂. In addition, the surface could act as a catalytic site for more hydrogen adsorption. Copper has been used in combined form with other metals or transition metals to improve the hydrogen storage properties of MgH₂ [21], [22], [23]. When used as one of the combining elements in a carbon-supported high entropy alloy (NiCoFeCuMg), a reversible catalytic phase Mg2Ni(Cu)/Mg2Ni(Cu)H4, was formed after hydrogenation/dehydrogenation reactions and this was investigated to have improved the hydrogen storage ability of MgH₂ [24]. Sometimes when doped with MgH₂ in a chemically combined form, it forms an intermetallic phase with Mg. This was exemplified in the works of Wang et al. [17] where CuS2 was ball milled with MgH₂. In-situ formation of the MgCu₂ phase was found to be beneficial for MgH2 dehydrogenation. In an earlier study where a ternary combination of Mg, Ni and Cu was ball- milled in the presence of H₂, Milanese et al. [25] reported that MgH₂ and MgCu₂ were formed. The MgCu₂ intermetallic provided a helpful impact by increasing the desorption partial pressure of MgH₂ which eventually yielded Mg₂Cu. It has also been reported that Mg₂Cu could be formed as a result of dehydrogenating MgH₂ doped with 10 wt. % CuFe₂O₄ at 450 °C [26]. It was reported that the positive influence of CuFe₂O₄ on the hydrogen storage properties of MgH₂ was based on a catalytic influence of Mg₂Cu formed dehydrogenation. Copper has played a key role in the capability of Ni-Cu solid solution to act as a good additive to modify the hydrogen storage properties of MgH₂ [27]. With an equal content of 50 wt. %, the catalytic mechanism of the alloy was attributed to the existence of Mg₂Ni(Cu) which aided the desorption and absorption of H₂. Iron, on the other hand, is a cheap and

the most abundant transition metal on the earth's crust [28].

Most investigations have focused on its use as an alloying element (with other metals), compound, or composite with other non - metal-based materials. When doped with MgH₂ via high-energy ball milling, it was reported to remain stable after the process including hydrogenation and dehydrogenation [29]. The stability of Fe, according to the researchers, played a catalytic role in the hydrogen desorption from Mgh₂. The valence state transition of Fe (combined with hollow carbon spheres) from +3 to +2 was concluded to be responsible for the fast dehydrogenation kinetics of MgH₂. [30]. When in compound form with electronegative elements, its valence state could be converted to 0 (i.e. it remains an elemental Fe) after milling and/or cycle(s) of hydrogenation/dehydrogenation. In the works of Cheng et al. [31], Fe₇S₈ was doped with MgH₂ to improve its hydrogen sorption properties. The reaction was confirmed to have taken place during milling as MgS and Fe were formed. The elemental Fe (coupled with MgS) was reported to have acted as a catalyst for the enhancement of MgH2 desorption. These studies, however, have shown that Cu and Fe play major catalytic roles when present in combined phases including complex compounds, alloys and intermetallic as additives in modifying the hydrogen storage properties of MgH₂. Both transition metals occur naturally (with Fe being cheaper) and it is believed that using each as an additive in the elemental form should be cheaper than when used in their combined states as these may involve further complex processes. Information arising from the investigations involving the use of these metals in their elemental form is very limited.

In this study, MgH_2 is separately doped elemental Cu and Fe via high- energy ball milling. The effects of these additives on the hydrogen release performance of MgH_2 are investigated.

2. Materials and Methods

Powders used for this study are MgH₂ (Xi'AN 98% purity), Fe (TLS Technik 99.8% purity) and Cu (Sigma Aldrich, 99.9 % purity). A Retsch PM 100 CM planetary ball mill was used. At different times, Fe and Cu powders were separately mixed with MgH₂ in a ratio of

90:10 (MgH₂ being the matrix). A total of 15 g powder and 5 stainless steel balls of 15 mm diameter were used resulting in a 10:1 ball-to-powder mass ratio. Milling was run for 5 h at 300 rpm.

Microstructural and elemental composition was carried out using VEGA 3 TESCAN Scanning Electron Microscope (SEM) equipped with an Energy Dispersion X-ray Spectrometer (EDX). X-Ray diffraction was carried out using Bruker D8 X-Ray diffractometer, with Cu K α radiation. Thermogravimetric analysis (TGA) was performed with the use of PerkinElmer TGA 4000 while Micometrics AutoChem 2950 was used to perform Temperature Programmed Desorption (TPD) analysis. For both thermal analyses, the heating rate of 10 °C/min was used.

3. Results and Discussions

3.1. Morphology and structure

Figure 1a shows the micrograph of un-milled MgH₂ with dispersed particles (although few aggregated particles are present). After 5 h ball milling, the morphology of MgH₂ becomes characterized with more fractions of loose finer dispersed sub-particles (Figure 1b) compared to as-received MgH₂. This may be attributed to the period of high-energy ball milling operation which has culminated in the fracturing of particles. Larger sponge-like agglomerates dispersed fine particles are formed in the micrograph of ball-milled MgH₂ + 10 wt. % Fe (Figure 1c); this could have occurred as a result of the milling parameters chosen and the addition of Fe used for this study. Observation from MgH₂ + 10 wt. % Cu micrograph (Figure 1d) informs that agglomerated particles appear angular, porous-like and devoid of dispersed fine particles as noticed for MgH₂ + 10 wt. % Fe particles. The EDX justifies the existence of elements in each sample. The calculated average particle size of asreceived MgH₂ is 0.053 µm (Figure 2a). Milling agglomerates these particles and from the distribution curve shown in Figure 2b; the average particle size (agglomerate) of MgH₂ after 5 h milling is 0.747 µm. The average particle sizes of milled MgH₂ + 10 wt. % Fe and $MgH_2 + 10$ wt. % Cu are 0.179 and 0.274 µm respectively (Figure 2c and Figure 2d). This shows that Fe and Cu powders restrict particle agglomeration (when compared to milled MgH₂).

The XRD patterns of as-received MgH_2 with milled MgH_2+10 wt. % Fe and MgH_2+10 wt. % Cu are presented in Figure 3. No additional compound is formed

as Cu and Fe remain un-oxidized or reduced after 5 h milling. This, therefore, shows that they will play a role in easing or aggravating the dehydrogenation of MgH₂.

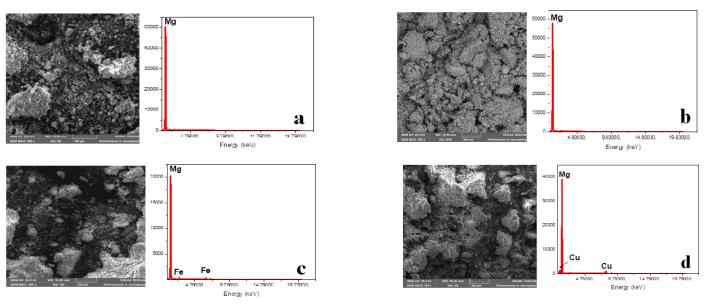


Figure 1. SEM/EDX of (a) as-received MgH₂ (b) milled MgH₂ (c) milled MgH₂ + 10 wt. % Fe (d) milled MgH₂ + 10 wt. % Cu.

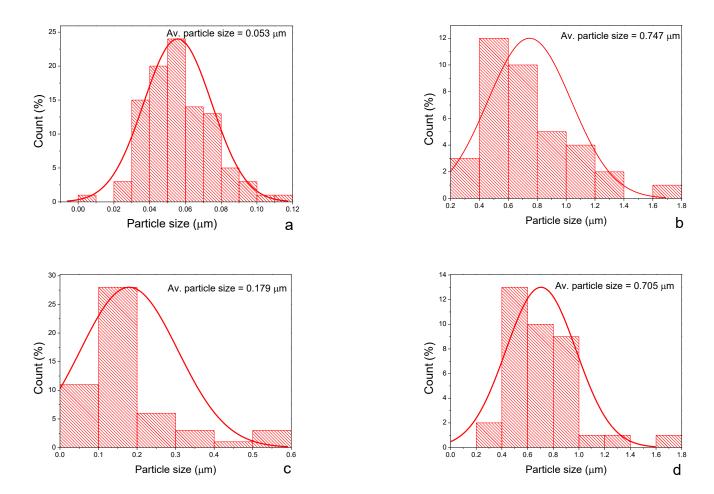


Figure 2. Average particle size distribution for (a) as-received MgH_2 (b) milled MgH_2 (c) milled $MgH_2 + 10$ wt. % Fe (d) milled $MgH_2 + 10$ wt. % Cu.

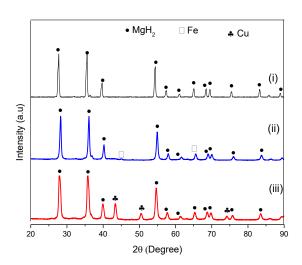
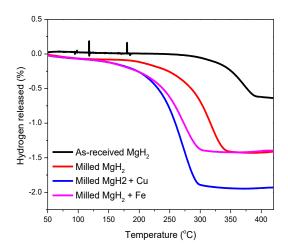



Figure 3. X-ray Diffraction patterns of as-received MgH₂, milled MgH₂ + 10 wt. % Fe and milled MgH₂ + 10 wt. % Cu.

3.2. Effects of each additive on dehydrogenation property of MgH₂

In order to investigate the amount (wt. %) of H₂ released, TGA was carried out. As illustrated in Figure 4, as-received MgH₂ displays the highest temperature from which dehydrogenation commences (303 °C) with the least content of hydrogen released (0.6 wt. %). After 5 h milling, initial hydrogen desorption drops to 233 °C and 1.4 wt. % H₂ is released. This shows that milling positively influences the hydrogen storage property of MgH₂. The formation of agglomerated (loose-like) fine particles created by the milling process may have created a better energetically favorable site for easier desorption.

Figure 4. TGA of as-received MgH₂, milled MgH₂, milled MgH₂ + 10 wt. % Fe and milled MgH₂ + 10 wt. % Cu.

The figure has also shown that Fe and Cu have imparted catalytic effects on MgH_2 dehydrogenation. The onset dehydrogenation temperature for Fe-doped MgH_2 is 205 °C while 215 °C is recorded for MgH_2 doped with Cu. Both MgH_2 / Cu and milled MgH_2 release the same amount of hydrogen (1.4 wt. %) but it is evidenced from the figure that the rate at which the former achieves this is faster as it also completes its dehydrogenation at 42 °C lower. The highest content of hydrogen (1.9 wt. %) is released from $MgH_2 + 10$ wt. % Fe composite and this is expected to have been done the easiest as the dehydration is completed at the least temperature (297 °C).

In this study, the ease of dehydrogenation is expressed by the magnitudes of activation energy Ea which was calculated from the TGA thermogram of each sample from the expression given in Eq. (1) [32] and this has also been adopted by Gbenebor *et al.* [33] in calculating Ea:

$$Ln(-Ln(1-X)) = -Ea/RT + Const.$$
 (1)

From the expression, T (K) is the absolute decomposition temperature and the activation energy for the thermal event is Ea (kJ/mol); the universal gas constant is R with a value of 8.314 J/mol·K. Decomposition degree (X) has the expression given in Eq. (2):

$$X = [(W_o - W_i) / (W_o - W_f)]$$
 (2)

The initial and instantaneous weights are represented by Wo and Wi respectively; The slope Ea/R of the fitted curve is obtained from a straight line graph of Ln (- Ln (1- X)) against 1/T.

The Ea required for dehydrogenation is 150.5, 115.6, 79.8 and 89.8 kJ/mol for as-received MgH₂, milled MgH₂, milled MgH₂ + 10 wt. % Fe and milled MgH₂ + 10 wt. % Cu respectively (Figure 5 a-d). The least magnitude of Ea calculated from Fe-doped MgH₂ TGA implies that it possesses the fastest dehydrogenation rate.

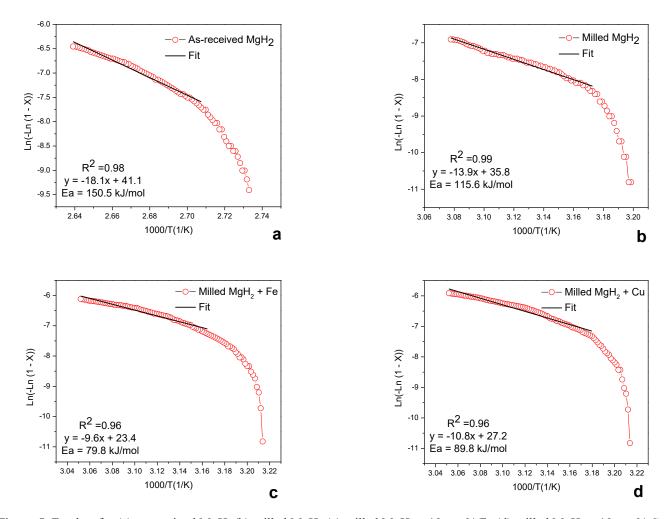
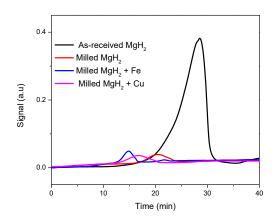



Figure 5. Ea plots for (a) as-received MgH₂(b) milled MgH₂ (c) milled MgH₂ + 10 wt. % Fe (d) milled MgH₂ + 10 wt. % Cu.

The time involved during hydrogen desorption from each hydride sample was determined from the TPD result (Figure 6). After approximately 19 min, asreceived MgH2 begins to release hydrogen. The time at which this reaction attains its maximum rate is on the 29th min and completed after 31.4 min. It takes 15. 2 min for milled MgH₂ to commence hydrogen release and this is completed earlier than as-received MgH₂ as this reaction takes place within 25.3 min. This further justifies the reduction in onset temperature and Ea of milled MgH₂ compared to the as-received. Hydrogen is released with more ease when Fe and Cu additives are used; within 15 min, MgH₂ + 10 wt. % Fe composite completes its dehydrogenation (after commencing from 12.2 min) while it takes 17.3 min for $MgH_2 + 10$ wt. % Cu composite to complete its dehydrogenation after commencing from 13.4 min.

Figure 6. TPD of as-received MgH₂, milled MgH₂, milled MgH₂ + 10 wt. % Fe and milled MgH₂ + 10 wt. % Cu.

4. Conclusion

In this work, the effects of elemental Fe and Cu additives on the dehydrogenation of MgH2 have been investigated and compared. Results show that after 5 h ball milling, both Fe and Cu remain un-reacted and their existence have acted as catalytic sites which has positively influenced the hydrogen release performance of MgH₂ (MgH₂ doped with Fe displayed better dehydrogenation). There is a reduction dehydrogenation temperature from 303 °C in as-received MgH₂ to 233 °C in as-milled MgH₂. This also shows that ball milling plays a positive role in the hydrogen release performance of MgH₂; 1.4 wt. % H₂ is released from milled MgH₂, which is 0.8 wt. % more than what asreceived MgH₂ could attain. The highest amount (1.9 wt. % H₂) is released from MgH₂ + 10 wt. % Fe composites whose temperature of onset of dehydrogenation is 205 °C. Although MgH₂ + 10 wt. % Cu composite releases a similar amount of hydrogen as the milled MgH₂ (1.4 wt. % H₂), it does this at a lower temperature (215 °C). The Ea associated with the dehydrogenation of as-received MgH₂ is 150.5 kJ/mol and this is greater than that calculated for milled MgH₂ (115.6 kJ/mol). Ease and rapid dehydrogenation are exemplified in doped samples as much lower Ea is required for hydrogen release; 79.8 and 89.8 kJ/mol are calculated for MgH₂ + 10 wt. % Fe and MgH₂ + 10 wt. % Cu composites respectively. While it takes 18.8 min for as-received MgH2 to commence hydrogen release, dehydrogenation of MgH₂ + 10 wt. % Fe and $MgH_2 + 10$ wt. % Cu composites start from 12.2 and 13.4 min respectively. The in-situ formed Fe and Cu in MgH₂ have acted as active catalytic sites for its improved dehydrogenation with MgH₂ + 10 wt. % Fe behaving better. These composites can find potential applications in transportation, power generation and fuel cells. For easy handling and ensuring effectiveness during application, some of our future works entail the following:

- Discs of these samples will be processed via compaction at different loads. With this, the effects of particle features on the mechanical properties (hardness, compressive and impact strengths) of these compacted discs will be studied.
- Thermal cycles of hydrogenation —dehydrogenation of compacted discs will be studied to investigate their thermal and mechanical stabilities.

Conflict of Interest Statement

We the authors (Gbenebor O.P and Popoola A.P.I) declare that we have no known conflicts of financial interests or personal relationships that could have influenced the work reported in this article.

Data Availability Statement

No data or additional materials were utilized for the research described in the article. All findings in this study have been presented in the discussion section.

References

- [1] Rocha, S. Oliveira, C.M. Viana and A.I. Ribeiro," Chapter 8 Climate Change and its Impacts on Health, Environment and Economy," *One Health, Integrated Approach to 21st Century Challenges to Health*, pp. 253-279, 2022, doi: https://doi.org/10.1016/B978-0-12-822794-7.00009-5
- [2] D.P. Loucks," Chapter 2 Impacts of Climate Change on Economies, Ecosystems, Energy, Environments, and Human Equity: A Systems Perspective," The Impacts of Climate Change, A Comprehensive Study of Physical, Biophysical, Social, and Political Issues, pp. 19-50, 2021, doi: https://doi.org/10.1016/B978-0-12-822373-4.00016-1
- [3] J.M. Aberilla, A. Gallego-Schmid, L. Stamford and A. Azapagic," Environmental Sustainability of Cooking Fuels in Remote Communities: Life Cycle and Local Impacts," Science of The Total Environment, vol. 713, pp. 1-12, Apr. 2020, doi: https://doi.org/10.1016/j.scitotenv.2019.136445
- [4] S.A. Neves and A.C. Marques, "The Substitution of Fossil Fuels in the US Transportation Energy Mix: Are Emissions Decoupling from Economic Growth?" *Research in Transportation Economics*, vol. 90, pp. 1-14, Dec. 2021, doi: https://doi.org/10.1016/j.retrec.2021.101036
- [5] M.F. Bashir, M. Shahbaz, B. Ma and K. Alam, "Evaluating the Roles of Energy Innovation, Fossil Fuel Costs and Environmental Compliance towards Energy Transition in Advanced Industrial Economies," *Journal of Environmental Management*, vol. 351, pp. 1-10, Feb. 2024, doi: https://doi.org/10.1016/j.jenvman.2023.119709
- [6] S. Sharma, S. Agarwal and A. Jain," Significance of Hydrogen as Economic and Environmentally Friendly Fuel," *Energies*, vol. 14, no. 21, pp. 1-28, Nov. 2021, doi: 7389; https://doi.org/10.3390/en14217389
- [7] Y. Shang, C. Pistidda, G. Gizer, T. Klassen and M. Dornheim." Mg-Based Materials for Hydrogen Storage," Journal of Magnesium and Alloys, vol. 9, no. 6, pp. 1837-1860, Nov. 2021, doi: https://doi.org/10.1016/j.jma.2021.06.007

- [8] X.B. Xie, et al., "First-Principles Studies in Mg-Based Hydrogen Storage Materials: A Review", *Energy*, vol. 211, pp. 1-11, Nov. 2020, doi: https://doi.org/10.1016/j.energy.2020.118959
- [9] G. Tian, F. Wu, H. Zhang, J. Wei, H. Zhao and L. Zhang, "Boosting the Hydrogen Storage Performance of MgH₂ by Vanadium Based Complex Oxides," *Journal of Physics and Chemistry of Solids*, vol. 174, pp. 1-9, Mar. 2023, doi: https://doi.org/10.1016/j.jpcs.2022.111187
- [10] V.V. Berezovets, R.V. Denys, I.Y. Zavaliy and Y.V. Kosarchyn, "Effect of Ti-based Nanosized Additives on the Hydrogen Storage Properties of MgH₂," *International Journal of Hydrogen Energy*, vol. 47, no. 11, pp. 7289-7298, Feb. 2022, doi: https://doi.org/10.1016/j.ijhydene.2021.03.019
- [11] G. Yao, et al., "Catalytic Effect of Ni@rGO on the Hydrogen Storage Properties of MgH₂," *Journal of Magnesium and Alloys*, vol. 8, pp. 461-471, Jun. 2020, doi: https://doi.org/10.1016/j.jma.2019.06.006
- [12] T. Huang, et al., "Enhancing Hydrogen Storage Properties of MgH₂ through Addition of Ni/CoMoO₄ Nanorods", *Materialstoday Energy*, vol. 19, pp. 1-11, Mar. 2021, doi: https://doi.org/10.1016/j.mtener.2020.100613
- [13] S.K. Verma, M.A. Shaz and T.P. Yadav, "Enhanced Hydrogen Absorption and Desorption Properties of MgH₂ with Graphene and Vanadium Disulfide", *International Journal of Hydrogen Energy*, vol. 48, no. 56, pp. 21383-21394; Jul. 2023, doi: https://doi.org/10.1016/j.ijhydene.2021.12.269
- [14] C. Cheng, H. Zhang, M. Song, F. Wu and L. Zhang, "Research Regarding Molybdenum Flakes' Improvement on the Hydrogen Storage Efficiency of MgH₂", *Metals*, vol. 13, pp. 1-11, Mar. 2023, doi: https://doi.org/10.3390/met13030631
- [15] N.A. Ali, M.S. Yahya, N. Sazelee, M.F.M. Din and M. Ismail, M, "Influence of Nanosized CoTiO₃ Synthesized via a Solid-State Method on the Hydrogen Storage Behavior of MgH₂", *Nanomaterials*, vol. 12, no. 7, pp. 1-18, Sep. 2022, doi: https://doi.org/10.3390/nano12173043
- [16] O. P. Gbenebor and A.P.I. Popoola, "Transition Metal-Based Materials and their Catalytic Influence on MgH2 Hydrogen Storage: A Review," *International Journal of Renewable Energy Development*, vol. 12, no. 6, pp. 1141-1159, Oct. 2023, doi: https://doi.org/10.14710/ijred.2023.57805
- [17] P. Wang, Z. Tian, Z. Wang, C. Xia, T. Yang and X. Ou, "Improved Hydrogen Storage Properties of MgH₂ using Transition Metal Sulfides as Catalyst," *International Journal of Hydrogen Energy*, vol. 46, no. 53, pp. 27107-27118, Aug. 2021, doi: https://doi.org/10.1016/j.ijhydene.2021.05.172
- [18] H. Li., J. He, Q. Sun and S. Wang, "Effect of the Environment on the Morphology of Ni Powder during High-Energy Ball Milling", *Materials Today Communications*, vol. 25, pp. 1-5, Dec. 2020, doi: https://doi.org/10.1016/j.mtcomm.2020.101288

- [19] X. Liu, S. Wu, X. Cai and L. Zhou, "Hydrogen Storage Behaviour of Cr- and Mn-Doped Mg₂Ni Alloys Fabricated via High-energy Ball Milling", *International Journal of Hydrogen Energy*, vol. 48, no. 45, pp. 17202-17215, May 2023, doi: https://doi.org/10.1016/j.ijhydene.2023.01.180
- [20] M. Jiang, J. Xu, P. Munroe and Z. H. Xie, "First-Principles Study on the Hydrogen Storage Properties of MgH₂(1 0 1) Surface by CuNi Co-Doping," *Chemical Physics*, vol. 565, pp. 1-8, Jan. 2023, doi: https://doi.org/10.1016/j.chemphys.2022.111760
- [21] Y. Zhao, et al., "Improvement Effect of Reversible Solid Solutions Mg₂Ni(Cu)/ Mg₂Ni(Cu)H₄ on Hydrogen Storage Performance of MgH₂", *Journal of Magnesium and Alloys*, vol. 12, no. 1, pp. 197-208, Jan. 2024, doi: https://doi.org/10.1016/j.jma.2022.04.006
- [22] S. Wu, X. Liu and X. Cai, "High-Value Utilization of Intermetallic Cu₉Al₄ as an Additive to Improve the Hydrogen Storage Performance of Magnesium," *International Journal of Hydrogen Energy*, vol. 48, no. 79, pp. 30818-30831, Sep. 2023, doi: https://doi.org/10.1016/j.ijhydene.2023.03.444
- [23] A. Gupta, et al., "Enhanced Hydrogen Storage in Mg Catalysed by Cu–Ni–Co–Fe Quaternary Multi-Component Alloy," *International Journal of Hydrogen Energy*, vol. 50, pp. 932-945, Jan. 2024, doi: https://doi.org/10.1016/j.ijhydene.2023.08.243
- [24] Y. Liu, M. Yue, Y. Guo, Y. Jiang, L. Feng and Y. Wang, "Catalytic Effect of Carbon-Supported NiCoFeCuMg High-Entropy Alloy Nanocatalysts on Hydrogen Storage Properties of MgH₂," *Journal of Magnesium and Alloys*, pp. 1-11, May 2024, doi: https://doi.org/10.1016/j.jma.2024.04.031
- [25] C. Milanese, et al., "Reactivity and Hydrogen Storage Performances of Magnesium-Nickel-Copper Ternary Mixtures Prepared by Reactive Mechanical Grinding", *International Journal of Hydrogen Energy*, vol. 33, pp. 4593 4606, Aug. 2008, doi: 10.1016/j.ijhydene.2008.05.053
- [26] M.B. Ismail, N.S. Mustafa, N.A. Ali, N.A. Sazelee and M.S. Yahya, "The Hydrogen Storage Properties and Catalytic Mechanism of the CuFe₂O₄-Doped MgH₂ Composite System", *International Journal of Hydrogen Energy*, vol. 14, no. 1, pp. 318-324, Jan. 2019, doi: https://doi.org/10.1016/j.ijhydene.2018.04.191
- [27] J. Zhang, et al., "Catalytic Effect and Mechanism of NiCu Solid Solutions on Hydrogen Storage Properties of MgH₂", *Renewable Energy*, vol. 154, pp. 1229-1239, Jul. 2020, doi: https://doi.org/10.1016/j.renene.2020.03.089
- [28] X. Du, Y. Ding, F. Song, B. Ma, J. Zhao and J. Song, "Efficient Photocatalytic Water Oxidation Catalyzed by Polyoxometalate [Fe₁₁(H₂O)₁₄(OH)₂(W₃O₁₀)₂- (α-SbW₉O₃₃)₆] ²⁷- Based on Abundant Metals," *Chemical Communications Journal*, vol. 51, pp. 13925-13928, 2015, doi: 10.1039/c5cc04551g
- [29] M. Song, et al., "Unraveling the Degradation Mechanism for the Hydrogen Storage Property of Fe Nanocatalyst-Modified MgH₂," *Inorganic Chemistry Frontiers*, vol. 9, pp. 3874–3884, 2022, doi: 10.1039/d2qi00863g

- [30] P.K. Soni, A. Bhatnagar and M.A. Shaz, "Enhanced Hydrogen Properties of MgH₂ by Fe Nanoparticles Loaded Hollow Carbon Spheres," *International Journal of Hydrogen Energy*, vol. 48, no. 47, pp. 17970-17982, Jun. 2023, doi: https://doi.org/10.1016/j.ijhydene.2023.01.278
- [31] Y. Cheng, J. Bi and W. Zhang, "The Hydrogen Storage Properties of MgH₂–Fe₇S₈ Composites," *Materials Advances*, vol. 2, pp. 736-742, 2021, doi: 10.1039/d0ma00818d
- [32] A. Broido," Simple, Sensitive Graphical Method of Treating Thermogravimetric Analysis Data," Journal of Polymer Science Part A Polymer *Physics*, vol. 27, pp. pp. 1761-1774, Oct. 1969, doi: https://doi.org/10.1002/pol.1969.160071012.
- [33] O.P. Gbenebor, S.O. Adeosun, A.A. Adegbite and C. Akinwande, "Organic and Mineral Acid Demineralizations: effects on Crangon and Liocarcinus vernalis Sourced Biopolymer Yield and Properties," *Journal of Taibah University for Science*, vol. 12, no. 6, pp. 837–845, Oct. 2018, doi: https://doi.org/10.1080/16583655.2018.1525845