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Abstract 

In the past 20 years, scientists and engineers have rediscovered fractional calculus and have begun using it in more 

and more domains, most notably control theory. This study introduces a fractional adaptive PID (FAPID) controller 

which incorporates an additional parameter to enhance the performance of a conventional adaptive PID (APID) 

controller. A comparative analysis is conducted between the APID and FAPID controllers optimized using the 

metaheuristic Genetic Algorithm (GA). The evaluation uses a linearized model of the DC motor control system. The 

results demonstrate that FAPID controllers significantly outperform conventional APID controllers, particularly 

regarding rise time, settling time, overshoot, and mean absolute error. Among the proposed designs, the integration of 

FAPID proves to be the most effective in achieving a balance between responsiveness and stability, exhibiting 

exceptional robustness and adaptability to variations in DC motor and environmental conditions. This method can be 

extended to various fractional and integer systems to enhance their efficiency and reduce noise disturbance. 

 

Keywords: Integer Adaptive PID, Genetic Algorithm, DC motor, Fractional Adaptive PID controllers, 

Optimization Methods.

 

 

1. Introduction 

Following an initial exchange between the Hospital 

and Leibniz regarding a fractional-order (FO) derivative 

and its potential implications, fractional calculus 

emerged as a recognized field of scholarly investigation 

[1]. Applications of fractional order differentiation have 

piqued the curiosity of researchers from a wide range of 

scientific fields, especially the applied sciences. [2], [3], 

[4]. Podlubny's 1997 development of Fractional-Order 

Proportional-Integral-Derivative (FOPID) controllers 

revolutionized control systems by allowing for more 

flexible and precise tuning [5]. These fractional calculus-

based controllers provide greater stability, robustness, 

and responsiveness, making them ideal for high-

precision applications [6]. 

It is commonly known that one of the best control 

strategies now in use is the adaptive control method, the 

main trends in Fractional Order Adaptive PID Control lie 

in improving the flexibility, robustness, and performance 

of control systems in the face of complex dynamics and 

uncertainties. Advancements in adaptive tuning, 

computational methods, hybridization with AI, and 

theoretical developments are key driving forces in 

expanding the applicability of FOAPID controllers 

across various industries. 

Which deals with linear and non-linear systems' 

parametric uncertainty. Nonetheless, the emphasis was 
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on implementing the adaptive control approach using 

integer order systems [7]. Fractional calculus, a method 

that generalizes integer-order derivatives and integrals to 

non-integer orders, has been widely used in systems and 

control modeling, enhancing controller performance and 

robustness in fields like robotics [8], process control [9], 

aircraft systems [10] and biomedical engineering [11]. 

One clear benefit of fractional-order systems is their 

use in feedback control; in this case, fractional-order 

filters can raise system performance.  The hereditary 

nature of fractional-order operators [12] primarily 

contributes to this improvement, as it enhances the 

system's resilience against noise and external 

disturbances [13]. This capacity is particularly beneficial 

in settings where stability and accuracy are crucial. 

PID controllers, essential instruments in control 

systems, are extensively used to control and vary 

industrial operations. In order to provide precise and 

efficient control over dynamic systems, PID controllers 

combine three fundamental actions: proportional, 

integral, and derivative, thereby enhancing the stability 

and responsiveness of the process. Over the past few 

decades, the fractional-order PID (FOPID) controller has 

seen rapid development and broad application in control 

engineering and related sciences [14].  

Adaptive control, a leading method to manage 

parametric uncertainty in both linear and nonlinear 

systems, has traditionally focused on integer-order 

systems [15]. However, fractional-order approaches 

introduce new possibilities, particularly in optimizing 

system behavior under varying conditions. Genetic 

algorithms are a potent tool known for their ability to 

discover optimal or nearly perfect solutions in intricate 

optimization challenges. They are now commonly used 

to fine-tune control parameters in fractional systems. 

Traditionally, the APID controller has been the 

industry standard for control applications due to its 

straightforward design, simplicity, and ease of parameter 

tuning. While APID controllers offer a robust solution 

for basic control requirements, they often struggle with 

complex systems that require high precision and 

dynamic adaptability. To address these limitations, many 

modified versions of the APID controller have been 

introduced over time, yet challenges remain in areas like 

noise rejection and response flexibility. 

A genetic algorithm is a powerful computer tool that 

may quickly identify exact or approximate answers to 

complicated search and optimization issues. The process 

consists of numerous essential processes, including 

decoding, crossing, evaluation, encoding, and mutation. 

The procedure starts with a randomly created starting 

population, and each individual's fitness is then 

evaluated. The fitness function is critical in the genetic 

algorithm since it directly affects the algorithm's 

capacity to attain the desired results. By applying the 

fitness function to each individual, the algorithm assigns 

a fitness value that directs population selection and 

evolution toward optimal solutions [16]. 

The main highlight of this paper lies in the 

incorporation of the FAPID controller, refined through 

genetic algorithm optimization. Its main goal is to 

improve the performance of DC motor systems by 

lowering their rise time, settling time, and overshooting. 

We can get more accurate control by adding fractional-

order dynamics to the standard APID structure. The 

parameters are then optimized using a genetic algorithm 

that is tailored to the needs of the system. This integrated 

framework not only allows a thorough study but also 

lays the way for future advances in the field of fractional 

control systems. 

The rest of the paper is arranged as follows: Section 2 

presents a basic understanding of fractional-order 

systems. Section 3 focuses on the modeling of the DC 

motor being studied. Section 4 looks at the algorithms 

used for both integer-order and fractional-order adaptive 

PID controllers. Section 5 gives a comparative 

performance study of various controllers using 

simulations of the DC motor system. Section 6 

concludes by reviewing the findings and discussing 

potential future research options. 

 

2. Fractional Order Systems 

2.1. Fractional calculus 

Fractional calculus, a branch of calculus theory, 

extends derivative and integral operations to non-integer 

orders, expanding calculus's fundamental conceptions. 

It's a great way to model and test complicated systems 

because it allows fractional orders. It's also a more 

accurate way to describe things that happen in the real 

world than traditional integer-order methods [17]. This 
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unique feature has led to a significant increase in its 

applications across various sectors, demonstrating its 

effectiveness in addressing challenges where traditional 

techniques fall short [18]. 

More fields can use fractional-order systems now that 

approximation methods like rational functions for 

fractional derivatives and integrals are used. These 

include control theory [19], economics [20], renewable 

energy [21], etc. 

A generalized base operator is used for 

integration/differentiation, as follows: 

aDt
α = {

dα

dtα                , R(α) > 0

1                  , R(α) = 0

∫ (dτ)-α     , R(α) < 0  
t

a

                         (1) 

Where, 𝑎denotes lower limit of integration, 𝛼(𝛼 ∈ 𝑅) 

represents the order of fractional differentiation or 

integration, and 𝑅(𝛼) denotes the real part of 𝛼. 

 

2.2. Oustaloup approximation method 

The Oustaloup approach rests on the function 

approximation derived from as [18]: 

𝐺𝑓(𝑠) = 𝑠𝛼 , 𝛼 ∈ 𝑅+                                            (2) 

With consideration for the rational function: 

𝐺𝑓(𝑠) = 𝐾 ∏
𝑠+𝑤𝑘

′

𝑠+𝑤𝑘

𝑁
𝑘=1                                         (3) 

Still, the poles, zeros, and gain are assessable as: 

 

wk
′ = wb. wu

(2k−1−γ)/N
, wk = wb. wu

(2k−1+γ)/N
, K =

wh
γ
 

      In a geometrically dispersed frequency band, 𝑤𝑢 

denotes the central frequency and the unity gain in 

frequency.  Let 𝑤𝑢 = √𝑤ℎ𝑤𝑏, : 𝑤ℎ and 𝑤𝑏respectively 

reflect the upper and lower frequencies. The orders of 

derivative and filter respectively are γ and 𝑁. 

 

2.3. Reduction of fractional-order models  

Model reduction involves approximating a high-order 

model with a lower-order counterpart. The use of filters 

to approximate fractional-order operators often leads to 

high-order transfer functions, necessitating a reduction. 

It is essential to define an optimization criterion in order 

to achieve the most efficient possible reduced-order 

model. The error is subsequently used to construct an 

objective function. The objective function transforms the 

problem into a numerical optimization challenge. This 

issue can only be addressed using numerical 

optimization methods, and the approach proposed in 

references [22], [23] and[24] provides an optimal 

algorithm for model reduction by following these steps: 

• Step 01: Provide the high-order model. 

• Step 02: Select the desired orders for the 

numerator and denominator of the reduced-order 

model. 

• Step 03: Define a function that describes the 

objective function. 

• Step 04: Utilize a solver to determine the optimal 

reduced-order model. 

 

3. Modeling of DC Motor 

The model of the DC Motor is shown in Figure 1. 

The position 𝑞(𝑡), the controlled variable, will be 

governed by the applied voltage 𝑉𝑎 . 

 

Figure 1.General model of a DC Motor. 

The angular velocity 𝑤(𝑡) is the controlled variable 

for speed control, and the transfer function takes the 

following form:  [23], [24]. 

𝐺𝐷𝐶−𝑚𝑜𝑡𝑜𝑟(𝑠) =
𝑤(𝑠)

𝑉𝑎(𝑠)
=

𝐾𝑚

(𝐿𝑎𝑠+𝑅𝑎)(𝐽𝑠+𝑏)+𝐾𝑏𝐾𝑚
         (4) 

But for a lot of DC motors, the armature's time 

constant 𝜏𝑎 =
𝐿𝑎

𝑅𝑎
 is insignificant, hence the model can be 

reduced to: 

𝐺𝐷𝐶−𝑚𝑜𝑡𝑜𝑟(𝑠) =
𝑤(𝑠)

𝑉𝑎(𝑠)
=

𝐾𝑚

𝑅𝑎(𝐽𝑠+𝑏)+𝐾𝑏𝐾𝑚
=

𝐾𝑚
𝑅𝑎𝑏+𝐾𝑏𝐾𝑚

𝜏𝑠+1
=

𝐾𝐷𝐶−𝑚𝑜𝑡𝑜𝑟

𝜏𝑠+1
                                                                      (5) 

where 𝜏 =
𝑅𝑎𝐽

𝑅𝑎𝑏+𝐾𝑏𝐾𝑚
and𝐾𝐷𝐶−𝑚𝑜𝑡𝑜𝑟 =

𝐾𝑚

𝑅𝑎𝑏+𝐾𝑏𝐾𝑚
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In this work we use the identified model of DC Motor 

[25]: 

𝐺𝐷𝐶−𝑚𝑜𝑡𝑜𝑟(𝑠) =
𝑤(𝑠)

𝑉𝑎(𝑠)
=

𝐾𝐷𝐶−𝑚𝑜𝑡𝑜𝑟

𝜏𝑠+1
=

0.25

1.45𝑠+1
           (6) 

with the following  parameters values: 

𝐾𝐷𝐶−𝑚𝑜𝑡𝑜𝑟=0.25, 𝜏 = 1.45 

 

4. Optimization by Genetic Algorithms 

Natural selection and genetics are the foundations of 

the Genetic Algorithm, a bioinspired optimization 

method [23], [24]. Through the evolution of a population 

of potential solutions over multiple generations, it seeks 

to identify the best answer to an issue. Each stage is 

explained in full below:  

 

Step 1: Initialization 

• Objective: The goal function 𝑓(𝑥) that needs to be 

optimized should be defined. 

• Generate the initial population: Make an initial 

population of N individuals (potential solutions), each 

of whom is represented by a chromosome (a 

collection of parameters that have been encoded). A 

binary string, actual values, or any other 

representation appropriate for the issue can be used as 

the chromosome. 

• Set parameters: Define the population size (𝑁), 

number of generations (𝑀𝑎𝑥𝐺𝑒𝑛), crossover 

probability (𝑝𝑐), mutation probability (𝑝𝑚), and other 

relevant parameters. 

Step 2: Evaluate Fitness 

• Evaluate the fitness of each individual in the 

population using the objective function 𝑓(𝑥). 

• The fitness value indicates how good each candidate 

solution is. 

Step 3: Selection 

Based on their fitness, choose parents from the 

existing population. Better solutions have a higher 

chance of being chosen in this typically stochastic 

process. 

Step 4: Crossover (Recombination) 

To create new offspring (children), perform crossover 

between chosen parent individuals. 

Step 5: Mutation 

Apply mutation to progeny with a 𝑝𝑚 probability. 

The purpose of mutation is to preserve genetic variety 

and avoid premature convergence by introducing random 

changes to specific genes inside the chromosome. 

Step 6: Evaluate New Population 

• Calculate the fitness of the new offspring population. 

• Combine the offspring with the current population if 

needed, depending on the chosen GA strategy. 

Step 7: Replacement 

• Select individuals for the next generation based on 

fitness. 

Step 8: Check Stopping Criterion 

The algorithm should be terminated if the maximum 

number of generations (Max Gen) is reached or if the 

fitness improvement falls below a predetermined 

threshold. 

Step 9: Return the Best Solution 

• The best individual from the final population 

should be returned as the optimal solution. 

 

5. Control Strategy 

5.1. Adaptive integer PID controller 

The integer APID feedback control law is given by 

equation (7) [16]. 

𝑢(𝑡) = −𝑘𝑐[𝑘1(𝑡)𝑒(𝑡) + 𝐼{𝑘2(𝑡)𝑒(𝑡)} +

                      𝐷(𝑘3(𝑡)𝑒(𝑡))]                                            (7) 

With: 

𝑘1(𝑡) = 𝑘𝑝(𝑡) + 𝛼1𝑘𝑖(𝑡) + 𝛼3𝑘𝑑(𝑡) 

𝑘2(𝑡) = 𝛼2𝑘𝑖(𝑡),𝑘3(𝑡) = 𝛼4𝑘𝑖(𝑡),𝑘𝑝(𝑡) = 𝑒²(𝑡)        (8) 

𝑘𝑖(𝑡) = 𝐼{𝑒²(𝑡)}and  𝑘𝑑(𝑡) = 𝐷{𝑒²(𝑡)} 

𝑒(𝑡) = 𝑦(𝑡) − 𝑟(𝑡) 

where: Kp is the proportional gain, Ki is the integral 

time constant, Kd is the derivative time constant, and

1 2,ck and   are positive constants. 
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Figure2 shows a classical adaptive PID control 

system for a DC motor, enhanced by a genetic algorithm. 

The desired output (𝑦) is compared to the actual output 

(𝑟) to calculate the error (𝑒), which is sent to the PID 

controller. The PID gains (𝐾𝑝, 𝐾𝑖 , 𝐾𝑑) are optimized 

using a genetic algorithm to improve performance. The 

genetic algorithm evaluates an objective function that 

measures system performance and adjusts the gains for 

optimal control. The control signal (𝑢) from the PID 

controller drives the DC motor, and the actual output is 

fed back to form a closed-loop system. This approach 

ensures precise and adaptive control of the motor. 

 

Figure 2. Classical adaptive PID control of DC motor. 

 

5.2. Fractional adaptive PIλDμ  controller 

Equation (9) presents the FAPID feedback control 

law. 

𝑢(𝑡) = −𝑘𝑐[𝑘1(𝑡)𝑒(𝑡) + 𝐼𝜆{𝑘2(𝑡)𝑒(𝑡)} + 𝐷𝜇(𝑘3(𝑡)𝑒(𝑡))]          (9) 

with: 

𝑘1(𝑡) = 𝑘𝑝(𝑡) + 𝛼1𝑘𝑖(𝑡) + 𝛼3𝑘𝑑(𝑡) 

𝑘2(𝑡) = 𝛼2𝑘𝑖(𝑡)                                                        (10) 

𝑘3(𝑡) = 𝛼4𝑘𝑖(𝑡) 

𝑘𝑝(𝑡) = 𝑒²(𝑡) 

𝑘𝑖(𝑡) = 𝐼𝜆{𝑒²(𝑡)} 

𝑘𝑑(𝑡) = 𝐷𝜇{𝑒²(𝑡)} 

𝑒(𝑡) = 𝑦(𝑡) − 𝑟(𝑡) 

where: 𝜆 is an integrate operator and 𝜇 is derivative  

operator. 

Figure 3 shows a control system using a Fractional 

Adaptive PID Controller that has been tuned using a 

Genetic Algorithm. The controller controls a DC motor 

and adjusts its parameters (𝐾𝑝, 𝐾𝑖, 𝐾𝑑, 𝜆, 𝜇) to minimize 

an objective function depending on system performance. 

The procedure includes a feedback loop in which the 

motor output is compared to a reference input. 

 

Figure3.Fractional adaptive PID control system. 

 

6. Results and Discussion 

The fitness function 𝐹, chosen for minimization, is 

defined using the Mean Absolute Error (MAE). This 

metric quantifies the difference between the measured 

output (𝑦) and the desired output (𝑟), as given by the 

formula: 

𝑀𝐴𝐸 =
1

𝑁
∑  

𝑁

𝑖=1

|𝑦(𝑖) − 𝑟(𝑖)|                                       (11) 

Here, 𝑦 represents the system's measured output, and 

𝑟 is the reference input.  

Figure 4 illustrates the speed response of the DC 

motor controlled by APID Controller, with the optimized 

parameters as follows: 

• 𝑘𝑝 = 966.6787, 

• 𝑘𝑖 = 426.8123, 

• 𝑘𝑑 = 48.3883. 

As can be seen from Figure 4, the top graph 

illustrates the speed response of the DC motor controlled 

by APID Controller, where the motor quickly reaches the 

desired speed with no overshoot and stabilizes within 0.2 

seconds. Meanwhile, the bottom graph depicts the fitness 

values during the 100 iterations of the optimization 

process, with blue points representing various solutions 

and red markers indicating the optimal values, 

demonstrating successful convergence of the 

optimization. 

 

𝐲 
DC Motor 

Classical Adaptif 

PID Controller 

𝑘𝑑  𝑘𝑝  𝑘𝑖  

Optimizationby Genetic 

Algorithm 

+ 𝒓 𝒆 𝒖 

− 

Calculate The Objective 

Function 

 Proposed controller 

𝑘𝑑  

DC Motor 
Fractional Adaptif 

PID Controller 

Optimization by Genetic 

Algorithm 

𝑘𝑝  𝑘𝑖  

Calculate the Objective 

Function 

− 

+ 𝒓 𝐲 
𝒆 𝒖 

λ μ 
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Figure4. Speed DC motor using the integer adaptive PID 

controller. 

Figure 5 shows the speed of DC Motor using the 

FAPID Controller with the following optimized 

parameters values: 

• 𝑘𝑝 = 916.2217, 

• 𝑘𝑖 = 248.4534,  
• 𝑘𝑑 = 185.5106, 
• λ = 0.70365,  

• 𝜇 = 0.69464. 

where,𝜆is a parameter that influences the order of 

integration in the fractional controller and 𝜇si a 

parameter that affects the order of differentiation in the 

fractional controller.As can be seen from the Figure 5, 

the top plot depicts the speed response of a DC motor 

controlled by a fractional adaptive PID controller. The 

motor immediately achieves the necessary speed with 

minimal overshoot or oscillations, displaying great 

stability, accuracy, and rapid settling time. The bottom 

figure depicts the optimization of controller settings 

using a metaheuristic method. The blue dots reflect the 

fitness values of candidate solutions at each iteration, 

while the red curve denotes the optimal fitness. Initially, 

the algorithm tests a broad range of solutions (high 

variability in fitness), but as iterations go, the fitness 

values converge, indicating efficient parameter tuning. 

The relationship between the two figures demonstrates 

how the adjusted controller settings enable the smooth 

and speedy speed response shown in the top plot. 

 

Figure5.Speed DC motor using the fractional adaptive PID 

controller. 

Table 1 compares the transient response stability 

metrics of a DC motor system with two different control 

schemes: the standard APID controller and the suggested 

FAPID controller.  

 
Table 1. Transient Response Stability Parameters of DC 

Motor System 
Controllers Overshoot 

[%] 

Setling 

time 

[s] 

Rise 

time 

[s] 

Mean 

Absolute 

Error 

(rad/s) 

APID 0.0000  0.2479        0.1298     0.0086 

FAPID 0.0000 0.0683          0.0084    0.0032 

 

• For the over shoot [%]: Both controllers have 0% 

overshoot, preventing undesired oscillations over the 

required speed. This demonstrates how both 

strategies provide a steady and well-damped 

response. 

• For the settling time [s]: The proposed FAPID 

controller exhibits a quicker settling time of 0.0683 

seconds than the APID controller, which takes 

0.2479 seconds. This demonstrates the FAPID's 

improved capacity to get the system to a steady state 

more rapidly, which is crucial in real-time 

applications that need rapid reaction. 

• For the rise time [s]: The proposed FAPID 

controller has a substantially lower rise time (0.0084 

seconds) compared to the APID controller (0.1298 

seconds), indicating faster initial response to step 
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inputs. This highlights how the FAPID controller can 

provide a substantially quicker initial reaction, 

making it more successful in dynamic conditions. 

• For Mean Absolute Error (MAE) [rad/s]: The 

proposed FAPID controller has a reduced MAE of 

0.0032 rad/s compared to 0.0086 rad/s for the APID 

controller. This shows that the FAPID tracks the 

required speed more accurately, reducing deviations 

throughout the process. 

In conclusion, the FAPID controller's significant 

advancements show its potential for applications 

demanding accurate and quick control, such as robotics, 

automotive systems, and industrial automation. The use 

of fractional calculus not only improves transient 

responsiveness, but it also allows more flexibility and 

adaptability when tweaking the controller. This makes 

the FAPID controller a better option than previous 

techniques for assuring optimum performance in 

dynamic and complicated contexts. 

 

7. Conclusion 

This study provided a genetic algorithm-optimized 

FAPID controller to improve the performance of a DC 

motor. The findings showed that the FAPID controller 

beat the classic APID controller in many important 

performance parameters, including rising time, settling 

time, overshoot, and mean absolute error. These 

advantages are ascribed to fractional calculus's increased 

flexibility and accuracy, which allows for better 

modeling and management of the system's complicated 

dynamics.  

In industrial process control, FOAPID controllers are 

growing in popularity, particularly for systems with 

inaccurate models or uncertainties. They are appropriate 

for robotics, HVAC systems, electrical systems, and 

chemical processes due to their capacity to manage 

changing system dynamics. Compared to traditional 

APID, the FAPID approach significantly enhances noise 

rejection and provides greater flexibility in managing 

complex transient responses. By incorporating fractional 

integrators and derivatives, the fractional PID controller 

allows for finer system tuning and adaptability to 

varying conditions, making it particularly effective for 

complex and precision-dependent applications. This 

improved response capability makes FAPID a more 

robust solution for modern control environments, where 

traditional APID may struggle with noise and precision 

limitations. 

The results have important implications for industrial 

applications that need fast, precise, and dependable 

responses, such as robots, automotive systems, and 

automation. Furthermore, this technique has the potential 

to be applied to other control systems, laying the 

groundwork for optimization in a variety of disciplines. 

 Research is being done on FOAPID controllers to 

increase the efficiency and stability of energy systems, 

including integration with power distribution networks 

and smart grids as in automation and robotics where 

FOAPID controllers are used to increase the accuracy 

and resilience of motion control, especially for systems 

that have complicated dynamics or need to react very 

flexibly to outside disturbances. 

Finally, this paper emphasizes the expanding 

relevance of fractional calculus in the area of automated 

control, presenting a viable option for improving existing 

approaches. Furthermore, future research will look at 

how the adaptive control technique might be applied to 

systems with partial or distributed dynamics to increase 

resilience, noise suppression, and overall performance. 
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