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Abstract 

Alzheimer’s disease (AD) is a gradient degeneration of essential cognitive activities such as memory, thinking, and 

cognition. AD mainly affects elderly individuals and is recognized as the most common cause of dementia. This study 

investigates the predictive performance of nine supervised machine learning algorithms—Logistic Regression, Decision 

Tree, Random Forest, K-Nearest Neighbors, Support Vector Machine, Gaussian Naïve Bayes, Multi-Layer Perceptron, 

eXtreme Gradient Boost, and Gradient Boosting—using neuropsychological assessment data. We applied two 

classification techniques—binary and multiclass—to classify 1761 subjects into three categories: cognitively normal 

(CN), mild cognitive impairment (MCI), and Alzheimer's disease (AD). Binary classification tasks focused on CNvsAD 

and CNvsMCI subsets, while multiclass classification used the full dataset (TriClass). Hyperparameter tuning was 

performed to optimize model performance. The results indicate that ensemble learning models, particularly Gradient 

Boosting (GB) and Random Forest (RF), exhibited superior accuracy compared to other algorithms. Most models for 

the CNvsAD subset achieved the highest accuracy (97.74%), while GB achieved the best performance (94.98%) for the 

CNvsMCI subset. For multiclass classification, RF achieved the highest accuracy at 84.70%. These findings highlight 

the robustness and efficiency of ensemble learning algorithms, especially in handling complex, non-linear data 

structures. This study underscores the potential of RF and GB as reliable tools for early detection and classification of 

Alzheimer’s disease using neuropsychological data. 
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1. Introduction 

Alzheimer’s disease (AD) is the most common cause 

of dementia and mainly affects people who are 60 years 

or older. There are three different stages of AD, early 

stage, middle stage, and late stage. In the early stage, 

patients begin to show simple and progressive loss of 

cognition and memory, with symptoms such as mild 

forgetfulness and problems with concentration. In the 

middle stage, as the disease progresses, patients 

experience trouble remembering events, learning new 

things, and planning complicated events. In the late stage, 

patients lose some physical abilities, such as walking, 

sitting, eating, and speaking [1], [2].   

Several machine learning (ML) Algorithms in the 

medical field have been used to analyze medical data and 

identify patterns that can accurately predict diseases. ML 

can assist in solving diagnostic challenges across various 

medical domains and is extensively utilized for disease 

detection [3]. In this study, we compared the performance 

of nine different ML algorithms—including Logistic 

Regression (LR), Decision Tree (DT), Random Forest 

(RF), K-Nearest Neighbors (KNN), Support Vector 
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Machine (SVM), Gaussian Naïve Bayes (GNB), Multi-

Layer Perceptron (MLP), eXtreme Gradient Boost 

(XGBoost) and Gradient Boosting (GB)—on the 

classification of AD based on the results of five 

neuropsychological assessments: Geriatric Depression 

Scale (GDSCALE), Mini-Mental State Exam (MMSE), 

Global Clinical Dementia Rating (GCDR), Functional 

Activities Questionnaire (FAQ) and Neuropsychiatric 

Inventory Questionnaire (NPI-Q). These 

neuropsychological questionnaires are commonly used to 

assess different levels of cognition and they are frequently 

used for AD diagnosis. 

This study aims to propose a robust machine learning 

model that accurately predicts AD, helping patients 

receive timely clinical intervention and avoid delays in 

diagnosis. Moreover, our study provides valuable insights 

into the use of ML algorithms as tools for diagnosing AD 

at a minimal cost. The following list includes some 

notable contributions:  

• To propose methods for addressing the issue of 

misdiagnosis caused by variability in 

neuropsychological assessment results, which 

typically focus on specific brain functions. 

• To compare the performance of various types of 

machine learning algorithms, including 

parametric, non-parametric, linear, nonlinear, and 

ensemble techniques, in predicting AD. 

• To develop robust ML models capable of 

accurately predicting AD. 

The rest of this paper is structured as follows: Section 

2 provides a concise survey and a comprehensive 

overview of relevant existing research and highlights gaps 

in the literature. Section 3 presents the materials and 

methods, including the dataset description, an 

introduction to the ML algorithms used, proposes the 

framework, and explains the performance metrics utilized 

to evaluate the results. Section 4 presents the results 

including the optimal hyperparameters obtained and the 

outcomes of the performance comparison of the models. 

Section 5 discusses the results, while Section 6 highlights 

the key findings, provides essential conclusions, and 

suggests potential directions for future research.    

 

2. Literature Review 

Significant progress has been made in diagnosing AD 

using ML algorithms, especially in early detection and 

classification of the disease. This literature review aims to 

provide a comprehensive analysis of relevant research in 

this field, highlighting key findings and methodologies.  

Several studies have focused on predicting AD using 

various data combinations, including brain imaging, 

blood and Cerebrospinal Fluid (CSF) biomarkers, genetic 

information, and neuropsychological assessments. For 

example, Wang et al. [4] proposed a multimodal method 

for AD prediction, based on 3D Magnetic Resonance 

Imaging (MRI), using support vector machines (SVM) 

classifier. Kruthika et al. [5] proposed a multistage 

classifier ML method using SVM, Naïve Bayes (NB), and 

K-Nearest Neighbors (KNN) algorithms, to classify 

different AD subjects. Al-Khuzaie et al. [6] adopted a 

deep learning (DL) technique to discriminate between AD 

and healthy patients, based on 2D medical images. Kaya 

et al. [7] presented an optimized Convolutional Neural 

Networks (CNNs) algorithm for detecting early AD 

stages from the MRI images using Particle Swarm 

Optimization (PSO). Doaa Ahmed Arafa et al [8] 

proposed a CNN algorithm for AD classification using the 

MRI images collected by the Kaggle Dataset. The study 

evaluated two methods: a simple CNN architecture and a 

fine-tuned VGG16. Venugopalan et al. [9] suggested the 

use of 3D-CNNs for the classification of AD patients, 

based on genetic analysis of Single Nucleotide 

Polymorphisms (SNPs), clinical data, and MRI images. 

Castillo-Barnes et al. [10] presented a comparison 

between different genes of AD subjects using the 

ANalysis Of  VAriance algorithm (ANOVA) followed by 

Principal Component Analysis (PCA) for feature 

selection, and SVM for AD classification. Jo et al. [11] 

developed a DL model for AD classification using Tau 

Positron Emission Tomography (Tau PET) scans. The 

model combines 3D-CNN and Layer-wise Relevance 

Propagation (LRP) algorithms to extract informative 

features from Tau PET images. Cui et al. [12] proposed a 

framework that involves longitudinal analysis of 

consecutive MRI scans in parallel with clinical 

neuropsychological assessments to compute the 

progression of the disease over time. Rohini and 

Surendran [13] proposed a group of supervised ML 

methods such as Multivariate Linear Regression (MLR), 

Logistic Regression (LR), and SVM that are applied to 
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baseline neuropsychological assessments, genetic data, 

and MRI images. Khan and Zubair [14] proposed an 

automated classification system based on Random Forest 

(RF) to classify AD patients into five distinct stages using 

MRI images and neuropsychological assessments. 

Almubark et al. [15] compared the performance of various 

machine learning algorithms, including Fully Connected 

Multi-Layer Perceptron (MLP), Support Vector Machine 

(SVM), Random Forest (RF), Gradient Boosting (GB), 

and AdaBoost (AB) classifiers, using behavioral data 

derived from neuropsychological assessments and/or 

cognitive tasks. Duc et al. [16] developed a 3D-CNN 

model for AD diagnosis using a neuropsychological 

assessment and functional MRI images. Khan et al. [17] 

developed a hybrid ML model to classify AD using the 

ADNI dataset. In the first experiment, eXtreme Gradient 

Boost (XGBoost), RF, and SVM classifiers were applied, 

while in the second experiment, only the RF classifier was 

used. Then in the final experiment, a hybrid model, 

combining all classifiers. Seshadri et al. [18] developed a 

multitask multimodal DL model using BiLSTM coupled 

to multiple hidden dense layers to predict AD based on 

two neuropsychological assessments. 

Most recent studies analyzing data related to AD 

classification and prediction primarily focus on 

neuroimaging data. However, collecting such data is not 

feasible for all Alzheimer’s patients due to its high cost 

and limited accessibility, particularly in certain regions. 

As a result, studies using only these data are often 

restricted to patients residing in major cities or those with 

access to advanced medical imaging and analysis 

facilities, which can introduce significant bias into ML 

models and favor these particular patient groups, 

potentially impacting the prediction performance of the 

underrepresented populations. Moreover, Alzheimer’s 

patients commonly exhibit notable behavioral 

disturbances and psychological symptoms, which are key 

features that can assist in diagnosing AD [19]. 

Nonetheless, many studies have not thoroughly addressed 

this aspect, with only a few incorporating, at most, one or 

two neuropsychological assessments. 

Our study seeks to address these gaps by 

simultaneously analyzing five different 

neuropsychological assessments, which can be collected 

using low-cost, first-line diagnostic tools, and using them 

to compare the performance of nine supervised ML 

algorithms in AD prediction. 

3. Materials and Methods 

In this section, we describe the procedures and tools 

used in this work. The dataset is thoroughly detailed, the 

methods—including nine machine learning algorithms—

are explained, and the performance metrics are presented. 

 

 Dataset description 

The neuropsychological data used in this study is 

acquired from the Alzheimer’s Disease Neuroimaging 

Initiative database ADNI [20]. The main objective of 

ADNI has been to evaluate whether the integration of 

MRI, PET, biological markers, and neuropsychological 

assessments can effectively measure the development of 

the early stage of AD [21]. ADNI provides unlimited 

access to the database and encourages researchers to use 

its data to understand the development of AD.  

In this study, the data collected during Phase 1 of 

ADNI (ADNI-1) were used. The initial dataset contained 

numerous empty and redundant fields that could affect the 

classification performance. The dataset was cleaned by 

removing the non-essential and empty columns. The 

classes, which were represented by non-numerical values, 

were transformed into numerical ones to ensure 

consistency in data processing. The final dataset consisted 

of 1761 samples, categorized into three groups: 616 

Cognitively Normal (CN), 878 Mild Cognitive 

Impairment (MCI), and 267 Alzheimer's disease (AD). 

The dataset included five neuropsychological assessments 

—GDSCALE, MMSE, GCDR, FAQ, and NPI-Q—

collected at different time intervals. The age and gender 

information are included in the dataset. Figure 1 illustrates 

the gender distribution of the subjects, while Table 1 

presents the demographic information.  

 

Figure 1. Gender distribution of the subjects. 
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Table 1. Demographic information of the subjects by clinical 

group, gender, and age: Mean ± Std. 

Clinical 

Group 
Male Female 

Age 

(Mean ± Std) 

CN 326 290 77.96 ± 6.8 

MCI 578 300 76.72 ± 7.0 

AD 140 127 77.07 ± 7.6 

Table 2 provides comprehensive information about the 

five neuropsychological assessments used, including their 

purposes and scoring methods. 

Table 2. Overview of neuropsychological assessments used. 

Neuropsychological 

Assessment 
Description 

GDSCALE 

It was used to evaluate the 

symptoms of depression in elderly 

patients based on 15 questions. 

MMSE 

It is an assessment based on a 

questionnaire used to test 

cognitive decline. The scale 

ranges from 0 to 30. 

GCDR 

It is designed to measure the 

advancement of Dementia and the 

progression of dementia, 

particularly in patients with MCI. 

The scale for this assessment 

ranges from 0 to 18. 

FAQ 

It is used to assess the ability of 

the patient to perform the usual 

daily activities independently. 

The scale ranges from 0 to 30. 

NPI-Q 

It assesses a range of 

neuropsychiatric symptoms, 

including agitation, aggression, 

anxiety, apathy, depression, 

disinhibition, irritability, and 

sleep disturbance. The scale 

ranges from 0 to 12. 

 

 Machine learning algorithms  

3.2.1. Logistic Regression classifier 

LR is a linear discriminative method used to solve 

classification and regression problems. The LR classifier 

achieves good accuracy in linearly separable classes. LR 

classification model is a statistical technique for binary 

classification that can be extended to multiclass 

classification. It can classify new samples by measuring 

the probability of belonging to each class and selecting the 

class that has the highest probability [22], [23]. The 

expression of the predictor in the LR model is: 

𝑃(𝑦𝑖|𝑥𝑖) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥𝑖𝜃 + 𝜃0) =
1

1+exp⁡(𝑥𝑖𝜃+𝜃0)
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(1)    

Where θ and θ0 represent weight’s matrix and Bais’ 

matrix, respectively.  

 

3.2.2. Decision Tree classifier  

DT is a hierarchical supervised ML algorithm used for 

classification and regression tasks. It consists of decision 

rules that are applied to partition the dataset feature space 

into subspecies of one class. Building a DT classifier is 

based on recursively partitioning the feature space of the 

training set to obtain an optimal set of decision rules that 

provide the best classification. The node at which the tree 

begins in a DT is called the" root node", and the node at 

which the tree ends is called the" leaf node". An internal 

node typically branches off into two directions or more, 

every non-terminal node (i.e., not-leaf node) represents a 

test node for features, and each branch represents an 

outcome of the test [24]. 

Feature selection measures are used to select the best 

partitions that distinct classes. The entropy (E) and 

information gain (IG) are applied to measure each node in 

the DT. The feature with the greatest Information Gain or 

the lowest Entropy is selected as the most suitable option 

for splitting the data at a specific node. E and IG are both 

metrics that quantify the amount of data associated with 

the prediction of the class. The entropy formula is as 

follows: 

𝐸 = −∑ 𝑝𝑖log(𝑝𝑖)
𝑛
𝑖=1 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2)             

Where the Pi are the ratios of elements of each class.  

The information gain formula is as follows: 

𝐼𝐺 = 𝐸𝑝𝑎𝑟𝑒𝑛𝑡−𝐴𝑣𝑒𝑟𝑎𝑔𝑒(⁡𝐸𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3) 

  

3.2.3. Random Forest classifier  

RF is an ensemble learning algorithm that uses 

multiple DTs and combines them to improve prediction 

performance. RF classifier constructs each DT in the 

ensemble using a bootstrapped sample of the training 

dataset, where each sample has an equal chance in 

selection. Additionally, the ensembles are constructed 

using a sample of data randomly selected from the training 

dataset with replacement every time. Each tree in the 

ensemble acts as an autonomous classifier to determine 

the class label of an unlabeled instance using an 

aggregating technique called majority voting, where each 
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classifier casts one vote for its predicted class label. Then 

the class label with the most votes is used to classify the 

unlabeled instance [25], [26]. 

 

3.2.4. K-Nearest Neighbors classifier 

KNN is a cluster analysis technique. However, it is 

considered the most important and popular classifier. A 

KNN classifier works by identifying the k closest samples 

in the training dataset and using them to determine the 

label of new data based on the majority label among these 

nearest neighbors [27]. Where k is the number of 

neighbors based on the similarity in the distance.  

The optimal value of k chosen is crucial because the 

small value of k can add noise to the classification process 

which has an important impact on the classification 

accuracy, and the big value of k makes computing 

operations more complex and consumes more time [28]. 

The Euclidean distance formula is commonly used to 

calculate the distance between samples [29]. This formula 

is defined as follows:  

𝑑(𝑥, 𝑦) = √∑(𝑥𝑖 − 𝑦𝑖)
2

𝑛

𝑖=1

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4) 

3.2.5. Support Vector Machine classifier 

SVM classifier is a supervised learning technique that 

aims to create a hyperplane between two classes in a 

dataset. The hyperplane is positioned in a way that 

maximizes the distance between the closest labeled 

instances from each of the classes which permits the 

classification of new unlabeled instances (i.e., feature 

vectors) into one of the classes. These closest labeled 

instances are known as support vectors. The optimal 

hyperplane of the linear kernel can be defined as: 

𝑦 = 𝜔𝑥𝑡 + 𝑏⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(5)                    

Where ɷ is the weight vector, x is the input feature 

vector, and b is the bias [30]. 

The values of ɷ and b must satisfy the following 

inequalities for all elements of the training set: 

{
𝜔𝑥𝑖

𝑡 + 𝑏 ≤ 1⁡, 𝑖𝑓⁡𝑦𝑖 = 1

𝜔𝑥𝑖
𝑡 + 𝑏 ≥ 1⁡, 𝑖𝑓⁡𝑦𝑖 = −1

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡                          (6)       

Where xi represent the feature vectors representations 

and yi are the classes labels of a training compound i. 

The goal of training an SVM model is to find the 

values of ɷ and b that make the hyperplane separate the 

data and maximize margin 1/||ɷ||2. A kernel function can 

be applied to a nonlinear classification problem to 

transform the original input feature space into a higher 

dimensional space. This technique helps to linearly 

separate the data points by a linear classifier model, which 

could help to do a fast computation in high dimensional 

space. The most common kernels are Polynomial, 

Gaussian, and Radial Basis Function kernels (RBF). 

 

3.2.6. Gaussian Naïve Bayes classifier 

GBN classifier is a probabilistic classifier based on 

Bayes’ theorem. In GNB, each feature in each class is 

considered an independent variable, and the classification 

probability for each variable is calculated according to a 

Gaussian (i.e., Normal) distribution [30]. The 

classification label is derived from the input using the 

posterior probability of Bayes’ rule. The feature 

distribution can be defined as the probability of an event 

X occurring given the probability of another event that has 

already occurred y, and it can be expressed as: 

𝑃(𝑦|𝑋𝑖) =
𝑃(𝑦).𝑃(𝑋𝑖|𝑦)

𝑃(𝑋𝑖)
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(7)            

Where P(X) and P(y) are distributions of the X and y 

events respectively.  

The mean and standard deviation are computed for the 

feature set of each class, and this information is used to 

estimate the likelihood of the features. The Likelihood is 

given by: 

𝑃(𝑋𝑖|𝑦 = 𝑦̂) =
1

𝜎√2𝜋
𝑒
(−

1

2
(
𝑥𝑖−𝜇

𝜎
)
2
)
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(8)⁡       

Where y, Xi, σ, and µ represent the class, observations 

(i.e., features), standard deviation for the selected class, 

and mean of the class, respectively. 

 

3.2.7. Multi-Layer Perceptron classifier  

MLP classifier is a type of Artificial Neural Network 

(ANN). The MLP model is composed of three layers, 

which are the input layer, the hidden layer, and the output 

layer [31]. The MLP model processes signals by 

sequentially computing the output of each layer from the 

inputs of the preceding layer, propagating the output 



Science, Engineering and Technology  Vol. 5, No. 1, pp. 177-191 

 

 

182 

signal from the input layer to the output layer. During the 

training process of an MLP model, the error signal —

which is the difference between the desired and actual 

outputs— is propagated backward from the output layer 

to the inner layers. This backward propagation of the error 

signal helps optimizes the accuracy of the model by 

repeatedly adjusting the weights and biases until the 

desired output is achieved. The equation below describes 

the relationship between the inputs and the output of a 

neuron: 

𝑦 = ∑ 𝜔𝑖𝑥𝑖 + 𝑏⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(9)𝑁
𝑖=1   

Where y, xi, ωi, and b represent the output, inputs, 

weights, and bias, respectively. 

 

3.2.8. eXtreme Gradient Boost classifier 

 XGBoost classifier is an ensemble classifier that uses 

an iterative process to enhance performance. With this 

approach, each successive model is trained to correct the 

errors made by previous models, repeating until further 

improvement is no longer achievable. This strategy 

prevents repeated errors across models, strengthening the 

overall model’s accuracy. XGBoost classifier is designed 

to optimize a specific objective function, which drives it 

toward more accurate predictions by combining loss and 

regularization terms. Regularization controls model 

complexity, reducing overfitting and variance, which 

helps the model generalize better and results in stable, 

reliable predictions. 

 

3.2.9. Gradient Boosting Classifier 

GB classifier follows a stepwise additive model, where 

weak learners (the Decision Trees models in our case) are 

added sequentially to the ensemble. Each new learner is 

trained to correct the errors made by the combined 

previous models, incrementally improving predictions. 

The GB algorithm uses gradient descent optimization, 

adjusting each learner based on the gradient (slope) of the 

loss function to reduce prediction errors. In this process, 

each weak learner contributes to minimizing the loss 

function, which measures the difference between actual 

and predicted values. By iteratively reducing the residual 

errors left by previous learners, the ensemble becomes 

increasingly accurate, as each model minimizes the error 

across all predictions. However, the iterative nature of 

adding and adjusting each learner makes this approach 

computationally expensive.  

 

 Proposed framework 

The nine classifiers (LR, DT, RF, KNN, SVM, GNB, 

MLP, XGB, and CB) were built by using the models and 

tools available in scikit-learn based on two steps: 

• The first step involves training each model 

individually on each dataset using different 

hyperparameter configurations to identify the 

appropriate and optimal hyperparameters. The 

optimal hyperparameters were selected by the 

GridSearchCV tuner from the scikit-learn library 

with 5-fold cross-validation. GridSearchCV uses a 

predefined set of hyperparameters of the models 

and exhaustively searches through all possible 

combinations to find the best combination that 

produces the highest performance accuracy for 

each model. 

• The second step involves retraining the models by 

using the optimal hyperparameters obtained from 

the first step to confirm the performance results of 

each algorithm. Finally, the results are compared 

to select the most robust classifier that achieves the 

best performance.  

These two steps were repeated for both modes of 

classification: binary and multiclass. For the binary 

classification task, the final dataset was divided into two 

subsets: CNvsAD and CNvsMCI, while the full dataset, 

named TriClass, was used for the multiclass classification 

task. 

For each classification mode, 80% of each subset was 

used to train the models, and the remaining 20% was 

reserved to test the performance of each model. 

Figure 2 illustrates the block diagram of the proposed 

framework, its main components, and their interactions.
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Figure 2. Detailed block diagram illustrating the structure of the proposed framework. 

 

3.3.1. Hyper-parameter Optimization 

To determine the optimal hyperparameters for the 

training process we used predefined ranges and trained 

each model with all possible combinations. The accuracy 

obtained from training the ML models individually was 

compared and the hyperparameters that yielded the 

highest accuracy were selected as the optimal ones. This 

process was performed for the subsets (CNvsAD and 

CNvsMCI) for binary classification, and the full dataset 

(TriClass) used for multiclass classification. The 

hyperparameter configuration ranges of the models are: 

• For the LR model, L1 and L2 Regularization, C 

parameter, and Solver were tuned. 

• For the DT model, we tuned the cost function by 

utilizing either the Gini index or entropy. Moreover, 

we adjusted Max_depth, max_features, and 

max_leaf_nodes. 

• For the RF model, the Max_depth, max_features, 

max_leaf_nodes, and the cost function were tuned. 

• For the KNN model, the n_neighbors and distance 

metrics were adjusted using either Euclidean, 

Manhattan, or Minkowski metric. 

• For the SVM model, we used a different kernel and 

tuned the value of Gamma and C parameters. 

• For the GNB model, we adjusted only 

Var_smoothing. 

• For MLP model, the Hyper-parameters, including 

the dimensions of the hidden layer, solver, and 

activation function were tuned.  

• For XGBoost model, Max_depth, n_estimators, and 

the learning_rate hyperparameters were tuned. 

• For GB model, we tuned the Max_depth, 

n_estimators, max_leaf_nodes, and the 

learning_rate. 

 

 Performance metrics 

The performance metrics were calculated based on the 

values of the confusion matrix, which is considered very 

important for evaluating classification models. The 

confusion matrix allows to identify the values of True 

Positives (TP) when the classification model correctly 

predicts a true target value, False Negatives (FN) when 

the classification model incorrectly predicts a false target 

value, True Negatives (TN) when the classification model 

correctly predicts a false target value, and False Positives 
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(FP) when the classification model incorrectly predicts a 

true target value. By using these values from the 

confusion matrix, the following metrics were calculated 

for each proposed model: 

• Accuracy: The accuracy is the ratio of the sum of 

true cases and the total number of all the cases. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(10) 

• Precision: The precision is the proportion of the 

positive cases that were predicted correctly. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(11) 

• Recall: The recall is the proportion of the correctly 

identified positive cases. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(12) 

• F1 Score: F1 score is calculated as: 

𝐹1⁡𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(13) 

• Area Under the ROC (Receiver Operating 

Characteristic) curve (AUC): The AUC is a 

specific performance metric used to assess the ability 

of a classification model to distinguish between two 

classes, ranging from 0 to 1. 

 

4. Results  

In the following section, we describe the findings 

obtained in the two steps of the proposed framework, for 

binary and multiclass classification. We successfully 

implemented and fitted nine ML models. We split each 

dataset (CNvsAD, CnvsMCI, and TriClass) into two 

groups: a training set containing 80% of the total data, 

which was used to train the ML models, and a testing set 

containing 20% of the total data, which was used to 

evaluate the performance of the trained models. 

 

 Optimal hyperparameters  

The optimal hyperparameters were automatically 

tuned with the help of the GridSearchCV tuner. Table 3 

shows the optimal hyperparameters achieved based on the 

best accuracy.  

 

Table 3. Optimal hyperparameters achieved from the first step. 

ML model Optimal hyperparameter 

 CNvsAD subset CNvsMCI subset TriClass dataset 

Logistic Regression C=1000; Penality=L1; 

Solver=liblinear 

C=100; Penality=L1; 

Solver=liblinear 

C=1000; Penality=L1; 

Solver=liblinear 

Decision Tree  Criterion=gini; max_depth=4; 

max_leaf=4 

Criterion=gini; max_depth=4; 

max_leaf=2  

Criterion=gini; 

max_depth=4; max_leaf=2  

Random Forest Criterion=gini; max_depth=4; 

max_features=auto; 

n_estimators=200 

Criterion=entropy; 

max_depth=9; 

max_features=log2; 

n_estimators=200 

Criterion=gini; 

max_depth=4; 

max_features=auto; 

n_estimators=200 

k-Nearest Neighbors N_neighbours=20; 

metric=Manhattan 

N_neighbours=7; 

metric=Manhattan 

N_neighbours=14; 

metric=Manhattan 

Support Vector Machine C=1000; gamma=1; 

kernel=RBF 

C=1000; gamma=1; 

kernel=linear 

C=1000; gamma=1; 

kernel=RBF 

Gaussian Naïve Bayes Var_smoothing=4.5e-04 var smoothing=4.9e-06 var smoothing=3.9e-06 

Multi-Layers perceptron Learning_rate= adaptive; 

hidden layer=10; 

solver=adam; activation 

function= tanh.  

Learning_rate= adaptive; 

hidden layer=21; 

solver=adam; activation 

function= sigmoid.  

Learning_rate= adaptive; 

hidden layer=40; 

solver=adam; activation 

function= tanh.  

eXterme Gradient Boost Learning_rate=0.001; 

max_depth=4; 

n_estimators=200 

Learning_rate=0.001; 

max_depth=2; 

n_estimators=200 

Learning_rate=0;0001; 

max_depth=4; 

n_estimators=200 

Gradient Boosting max_depth=2; max_leaf=2; 

n_estimators=200 

max_depth=4; max_leaf=2; 

n_estimators=200 

max_depth=4; max_leaf=2; 

n_estimators=200 



Science, Engineering and Technology  Vol. 5, No. 1, pp. 177-191 

 

 

185 

 Performance Comparison 

After obtaining the optimal hyperparameters of each 

model from the first step, we evaluated the overall 

accuracy of the models by averaging the performance 

accuracy of each fold of cross-validation repeated five 

times. To better visualize the classification performance 

of proposed models, Figure 3 shows the performance 

accuracy of the ML models performed for the binary 

classification, while Figure 4 presents the model 

accuracies of multiclass classification. 

 
Figure 3. Overall accuracies of the nine models trained for 

binary classification. 

 

 
Figure 4. Overall accuracies of the nine models trained for 

multiclass classification. 

For more details, Table 4 and Table 5 present the 

performance metrics of the models that use the CNvsAD 

and CNvsMCI subsets (binary classification).  

For multiclass classification, Table 6 summarizes the 

performance of the results of the models trained on the 

TriClass dataset.  

The tables present several metrics used to evaluate the 

models' performance, including accuracy, precision, 

recall, and F1-score.  

 

Table 4. Performance metrics of the models trained on 

ADvsCN subset (binary classification). 

Model Accuracy Precision Recall F1 score 

LR 97.74% 95.92% 98.48% 97.10% 

DT 97.74% 95.92% 98.48% 97.10% 

RF 97.74% 95.92% 98.48% 97.10% 

KNN 97.18% 95.00% 98.11% 96.40% 

SVM 97.74% 95.92% 98.48% 97.10% 

GNB 96.05% 93.27% 97.35% 95.03% 

MLP 97.18% 95.00% 98.11% 96.40% 

XGBoost 97.18% 95.00% 98.11% 96.40% 

GB 97.74% 95.92% 98.48% 97.10% 

 

Table 5. Performance metrics of the models trained on 

CNvsMCI subset (binary classification). 

Model Accuracy Precision Recall F1 score 

LR 94.31% 94.57% 93.67% 94.06% 

DT 94.31% 94.74% 93.54% 94.04% 

RF 94.31% 94.57% 93.67% 94.06% 

KNN 89.30% 88.75% 89.56% 89.05% 

SVM 94.31% 94.41% 93.80% 94.08% 

GNB 84.62% 84.42% 85.60% 84.45% 

MLP 94.31% 94.97% 93.67% 94.06% 

XGBoost 93.65% 93.58% 93.23% 93.40% 

GB 94.98% 95.45% 94.23% 94.74% 

 

Table 6. Performance metrics of models trained on TriClass 

dataset (multiclass classification). 

Model Accuracy Precision Recall F1 score 

LR 81.59% 76.18% 74.00% 74.88% 

DT 83.57% 79.65% 78.97% 79.28% 

RF 84.70% 82.11% 78.65% 80.06% 

KNN 76.49% 73.21% 72.81% 72.61% 

SVM 82.15% 77.74% 72.79% 74.38% 

GNB 70.82% 68.10% 69.66% 67.45% 

MLP 76.20% 73.95% 74?63% 73.45% 

XGBoost 80.74% 79.08% 77.02% 77.96% 

GB 83.57% 79.78% 77.39% 78.40% 

 

The experimental results of the performance 

comparison of LR, DT, RF, KNN, SVM, GNB, MLP, 

XGBoost, and GB classifiers showed that, for binary 

classification using the CNvsAD subset, the LR, DT, RF, 

SVM, and GB models achieved the highest accuracies 

among all models, with a score of 97.74%. The MLP, 

XGBoost, and KNN classifiers followed closely behind 

with accuracy scores of 97.18%. In contrast, the GNB 
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classifier showed the lowest accuracy among all models, 

with an overall score of only 96.05%. For the CNvsMCI 

subset, the GB model yielded the highest accuracy, with a 

score of 94.98%. 

In multiclass classification, when using TriClass 

dataset, the RF classifier achieved the highest accuracy, 

with a score of 80.70% 

 

 Receiver Operating Characteristic Curve 

(ROC) 

Figure 5 and Figure 6 show the ROC curves for binary 

classification for each class pair: CN-AD using the 

CNvsAD subset, and CN-MCI using the CNvsMCI 

subset. For the CN-AD classes, most models achieved a 

high AUC value (AUC = 0.98), indicating that they 

provide consistent and accurate predictions for these 

classes, which appear to be linearly separable. While, the 

LR, DT, RF, SVM, MLP, and GB models achieved an 

AUC of 0.94 for the CN-MCI classes, suggesting that 

distinguishing between the CN and MCI classes is more 

challenging for some models. The GNB model showed 

poor AUC overall.

 

 

Figure 5. ROC curves for pair class CN-AD that trained and tested on CNvsAD  subset: (a) Logistic Regression; (b) Decision 

Tree; (c) Random Forest; (d) K-Nearest Neighbors; (e) Support Vector Machine; (f) Gaussian Naïve Bayes; (g) multi-layer 

perceptron; (h) eXtreme Gradient Boost; and (i) Gradient Boosting. 

 



Science, Engineering and Technology  Vol. 5, No. 1, pp. 177-191 

 

 

187 

 

Figure 6. ROC curves for pair class CN-MCI that trained and tested on CNvsMCI subset: (a) Logistic Regression; (b) 

Decision Tree; (c) Random Forest; (d) K-Nearest Neighbors; (e) Support Vector Machine; (f) Gaussian Naïve Bayes; (g) multi-

layer perceptron; (h) eXtreme Gradient Boost; and (i) Gradient Boosting. 

 

The multiclass ROC curves for the three classes were 

plotted in Figure 7 using the prediction from all models 

using the One-vs-Rest strategy, each class has its own 

ROC curve. The blue curve is for CN class, the green is 

for MCI and the red curve is for AD. Based on the plotted 

data, it is apparent that the CN-Class performs best in the 

LR, DT, RF, and SVM models, having the highest Area 

Under the Curve (AUC=0.94), indicating consistent and 

accurate predictions for this class. The MCI-Class, 

however, has the highest AUC (0.88) for the RF model. 

The AD-Class performs best in XGBoost model having 

an AUC of 0.94, which outperforms all other models. 
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Figure 7. ROC curves for multiclass classification that trained and tested on TriClass dataset: (a) Logistic Regression; (b) 

Decision Tree; (c) Random Forest; (d) K-Nearest Neighbors; (e) Support Vector Machine; (f) Gaussian Naïve Bayes; (g) multi-

layer perceptron; (h) eXtreme Gradient Boost; and (i) Gradient Boosting. 

 

5. Discussion 

The findings of this study indicate that the 

performance of any machine learning model is influenced 

by the correct selection of the ML algorithms and their 

associated hyperparameters. Therefore, selecting the most 

appropriate hyperparameters is crucial for achieving 

optimal performance. Using the GridSearchCV tuner 

helped to effectively adjust and optimize the 

hyperparameters of the ML models. The selected 

hyperparameters included using the regularization 

techniques (L1 and L2) to address overfitting in the LR 

model, adjusting the number of weak learners in the 

XGBosst, GB and RF classifiers to enhance performance 

and reduce overfitting, modifying the number of 

neighbors for the KNN model, and adjusting the kernel 

and C value for the SVM model. While GridSearchCV is 

a widely used technique for hyperparameter tuning, it 

does have some limitations, one of the main drawbacks is 

that it can be very time-consuming, as it needs to test 

every possible combination of hyperparameters. This can 

be a challenge when dealing with large datasets or 

complex models, requiring significant computational 

power and time. However, there are alternative 

optimization techniques available that can help address 

this issue. For example, RandomizedSearchCV and 

HalvingGridSearchCV from scikit-learn can test a 

broader range of hyper-parameter values within the same 

computation time as GridSearchCV, making them more 

efficient options for hyperparameter tuning. 

Comparison of the results from the nine models 

revealed that the LR, DT, RF, SVM, and GB models 

achieved the highest classification accuracies for the CN-
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AD pair (97.74%), indicating that when data is linearly 

separable, these ML models perform well, making it 

difficult to evaluate their individual classification 

performance. However, when analyzing the results for the 

second subset (CNvsMCI) in binary classification, a 

significant gap in model performance emerged. For 

instance, the GB model achieved the highest accuracy 

when trained on the CNvsMCI subset (94.98%), and the 

RF model performed very well when trained on the 

TriClass dataset, with an accuracy score of 84.70%. This 

suggests that ensemble learning methods such as GB and 

RF are highly suitable for the diagnosis of Alzheimer's 

disease based on neuropsychological assessments. The 

advantage of ensemble learning algorithms is their ability 

to improve accuracy by combining multiple models (such 

as decision trees in our case), often resulting in better 

performance than individual models. They are more 

robust to overfitting, especially in high-dimensional data, 

as they mitigate the impact of errors from individual 

models using techniques like averaging or voting. 

Ensemble methods are particularly effective in handling 

imbalanced and high-dimensional datasets. By reducing 

both bias and variance, they achieve an optimal balance 

between these factors, enhancing overall model 

performance. In contrast, Individual models often rely on 

specific assumptions about the data distribution or the 

relationships between features and target variables. For 

example, LR assumes a linear relationship between input 

features and the logarithmic probability of the target, 

while DT may overfit the training data, capturing noise 

rather than general patterns. These limitations are 

common among most individual models and can reduce 

their ability to generalize effectively to new data. 

Although the results of this study show that the 

classification of AD based on neuropsychological 

markers is promising, it has some limitations. For 

example, some diseases such as Schizophrenia and 

Parkinson's disease can exhibit similar psychological 

symptoms as AD, which could lead to misdiagnosis. 

Additionally, the limited sample size affects the results 

and highlights the need for future research to enhance the 

dataset by incorporating additional markers, such as brain 

imaging, and genetic and biological markers. Moreover, 

using hybrid modeling with various datasets could 

potentially lead to the development of more robust and 

accurate models for diagnosing AD. 

 

6. Conclusion 

This study assessed the effectiveness of nine 

supervised ML algorithms, including LR, DT, RF, KNN, 

SVM, GNB, MLP, XGBoost, and GB, for predicting 

Alzheimer’s disease. The aim was to explore the 

capability of each model to correctly classify individuals 

with AD using neuropsychological assessments. We used 

the GridSearchCV function from the scikit-learn library 

to tune the hyperparameters of each model. Obtaining the 

optimal hyperparameters allowed us to build nine robust 

ML models, train them, and compare their classification 

performance. The results indicated that ensemble learning 

models, such as Gradient Boosting and Random Forest, 

demonstrate superior predictive power in Alzheimer's 

disease classification. These models outperform other 

algorithms by effectively identifying patterns in complex 

datasets and making accurate classifications. Their 

strength lies in handling non-linearly separable data, 

where the classes cannot be divided by a simple linear 

boundary, and in multiclass classification tasks, such as 

categorizing data into CN, MCI, and AD. This makes GB 

and RF particularly robust and efficient for analyzing 

neuropsychological data and addressing the challenges of 

AD diagnosis. 

The future work involves combining the 

neuropsychological data with various biological and 

neuroimaging markers to develop a robust model capable 

of predicting the early stages of AD. 
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