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Abstract 

In recent years, there has been a significant increase in the study of fractional systems and fractional-order control 

(FOC), which has proven effective in enhancing plant dynamics, particularly in terms of disturbance rejection and 

response time improvement. Traditionally, the Proportional-Integral-Derivative (PID) controller has been valued for 

its simplicity and ease of parameter adjustment. However, as the complexity of control systems escalates, several 

specialised PID controllers have been designed to address specific challenges. Despite its effectiveness, the 

conventional PID controller often faces limitations in complex systems requiring high precision and adaptive 

dynamics. Researchers have increasingly focused on the Fractional Proportional-Integral-Derivative (FPID) controller 

to address these deficiencies. The FPID controller incorporates fractional integrators and derivatives, facilitating 

improved tuning of system dynamics and offering increased control over response characteristics. This study 

introduces a fractional integrator in PID control to improve trajectory tracking and reduce delay time in Selective 

Compliance Articulated Robot Arm (SCARA) systems. Unlike traditional PID controllers, which may struggle with 

high-frequency noise and parameter variations, the fractional integrator offers enhanced noise suppression and 

adaptability. The fractional PID approach is relevant beyond robotics, including many systems like temperature 

control, electrical motor regulation, power electronics, and biomedical control systems, where accuracy and resilience 

to disturbances are essential. Unlike traditional PID, the proposed technique offers more adaptability in handling 

transient responses and greater disturbance suppression, making it a viable solution for modern, complex control 

environments. 

 

Keywords: Fractional Control (FC), Approximation Methods, Selective Compliance Articulated Robot Arm 

(SCARA), Performance Analysis. 

 

 

1. Introduction 

In recent years, the use of fractional-order calculus 

has been significant in the modelling and development of 

controllers for dynamic systems [1], [2], [3], [4]. This 

increased focus originates from the enhanced ability of 

fractional-order calculus to more accurately represent 

real systems in comparison to integer-order calculus [5]. 

Various methods for approximating fractional-order 

calculus have enabled its use in other domains, including 

control theory and electrical circuit theory [6]. 

The primary benefit of FOC is its robustness. The 

inaugural documented FOC system in the literature, 

introduced around twenty years ago, is designated as the 

"Commande Robuste d’Ordre Non Entier" (CRONE) 

controller [3]. This controller employs the constant phase 
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characteristic of the ideal Bode transfer function 1/sα to 

provide robust feedback control despite variations in 

gain. Studies also show that fractional-order systems, 

which are known as feedback control processes with 

long memory, make the system more responsive to 

changes and better able to handle noise and other 

disturbances [7], [8], [9]. 

Robotics has undergone significant evolution since 

the inception of the field, marked by the development of 

the pioneering industrial robot by Griffith P. Taylor in 

1937 [10]. This important step forward made it possible 

for robotic control systems to get better, like the 

fractional PID controllers we looked at in this study. 

These controllers are meant to help modern multi-joint 

robotic applications that need more precision and 

stability. 

Many studies have focused on developing new robust 

fractional-order controllers [11], [12], [13], [14], [15], 

[16], with most approaches based on the CRONE 

methodology [17]. In [8], Caponetto et al. propose an 

innovative FOC design employing a robust tuning 

approach for PID control, followed by further 

advancements in [18]. Additionally, the works in [19] 

and [20] present a fractional integral version of the 

PI/PID controller. 

Shah and Agashe [21] provide a comprehensive 

overview of fractional PID controllers, highlighting their 

flexibility and stability in complex systems. Our 

approach similarly leverages fractional-order calculus for 

improved tracking accuracy and stability but specifically 

addresses the issue of temporal lag in trajectory tracking, 

an aspect less emphasized in general reviews of 

fractional PID control. In another related work, Djeffal et 

al. [22] introduce an optimized torque control method for 

continuum robots, focusing on dynamic model 

enhancement and precise torque control through 

advanced optimization techniques. Although our study 

does not address continuum robots directly, our 

fractional-order PID (FPID) controller shares the goal of 

precision enhancement, extending this to multi-joint 

robotic systems with an emphasis on coordination and 

phase alignment across joints. This complements the 

OCTC approach, as both methods seek to reduce 

response lag and enhance accuracy, though applied to 

different robotic setups. 

Similarly, Tanyıldızı’s [23] work on fractional PID 

control for exoskeletons demonstrates adaptation to 

human motion and improved stability in dynamic 

environments. Our FPID approach also seeks to enhance 

tracking precision but is tailored to multi-joint robotic 

systems following complex trajectories, with a unique 

focus on synchronizing movements across joints. This 

attention to multi-joint coordination and phase alignment 

is especially relevant in SCARA robots, where precise 

inter-joint timing is critical. 

This study primarily focuses on applying a fractional 

PID controller to minimize delay and accurately track 

both the robot’s trajectory and the designated reference 

path. This is accomplished by incorporating fractional-

order filters into the traditional PID feedback loop. 

This paper is organized as follows: Section 2 covers 

the fundamentals of fractional-order systems. Sections 3 

and 4 present the integer and fractional PID controllers, 

respectively. Section 5 discusses the application of the 

fractional PID controller to the robot, with simulation 

results provided in Section 6. Finally, the conclusion and 

directions for future works are presented in Section 7. 

 

2. Fractional Calculus Fundamentals 

2.1. Definition  

Fractional calculus, which emerged in the 17th 

century, generalizes the notions of derivatives and 

integrals to non-integer orders, facilitating the 

assessment of integrals when the order nnn may be 

fractional, irrational, or complex. This domain has 

swiftly broadened in applications, providing a more 

precise depiction of real-world phenomena compared to 

conventional approaches. Currently, methods for 

estimating fractional derivatives and integrals render 

fractional calculus significant in control theory, electrical 

circuit theory, and capacitor theory [1], [2], [10], [18].  

The operator that unifies differentiation and 

integration is expressed as follows: 

𝑎𝐷𝑡
𝑞

= {

𝑑𝑞

𝑑𝑡𝑞                , 𝑅(𝑞) > 0

1                  , 𝑅(𝑞) = 0

∫ (𝑑𝜏)−𝑞     , 𝑅(𝑞) < 0  
𝑡

𝑎

                                          (1) 

where,  
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𝑅(𝑞) represents the real part of the fractional order 𝑞. 

The shown generalized fundamental operator equation 

incorporates differentiation and integration based on the 

value of 𝑅(𝑞). 

Domain of 𝑅(𝑞): 

• 𝑅(𝑞) > 0: The operator represents fractional 

differentiation of order 𝑞. 

• 𝑅(𝑞) = 0: The operator represents the identity (or 

constant) operation, essentially performing no 

differentiation or integration. 

• 𝑅(𝑞) < 0: The operator represents fractional 

integration of order – 𝑞 [2]. 

a – Integration lower limit. 

t – Integration upper limit.  

Developed primarily in the 19th century, fractional-

order derivative theory includes several definitions. The 

Grunwald-Letnikov (GL) definition, widely recognized 

and valued for its applicability in discrete control 

algorithms [5], [8], [10], is formulated as follows: 

𝐷𝛼𝑓(𝑡) = lim
ℎ→0

ℎ−𝛼 ∑ (−1)𝑗𝑘
𝑗=0 (

𝛼
𝑗 ) 𝑓(𝑘ℎ − 𝑗ℎ)                     (2) 

Where the coefficients are evaluated from:  

𝜔𝑗
(𝛼)

= (
𝛼
𝑗 ) =

Ӷ(𝛼 + 1)

Ӷ(𝑗 + 1)Ӷ(𝛼 − 𝑗 + 1)
 

 and ℎ is the step  time . 

The Riemann-Liouville (RL) definition is formulated 

as: 

𝑓(𝑡) =
𝑑𝑛

𝑑𝑡𝑛 ∫
𝑓(𝜏)

(𝑡−𝜏)𝛼−𝑛+1 𝑑𝜏
𝑡

𝑂
                                                    (3) 

For numerous functions relevant to real-world 

physical and engineering contexts, the RL and GL 

formulations are comparable [2].  

 

2.2. Fractional order systems 

Feedback control systems are a key area where 

fractional calculus is applied to improve efficiency, 

robustness, and flexibility. For the control engineer, 

fractional calculus helps compensate for shifts in the 

transfer function due to parametric variations, aging, and 

other factors [17].  

The fractional order system is given as: 

𝐺(𝑠) =
𝑏𝑚𝑠𝛽𝑚+𝑏𝑚−1𝑠𝛽𝑚−1+⋯+𝑏1𝑠𝛽1+𝑏0

𝑎𝑛𝑠𝛼𝑛+𝑎𝑛−1𝑠𝛼𝑛−1+⋯+𝑎1𝑠𝛼1+𝑎0
                                     (4) 

where 𝑎𝑖  and 𝑏𝑗 are real numbers such that 

{
0 ≤ 𝛼0 ≤ 𝛼1 ≤ ⋯ ≤ 𝛼𝑛

0 ≤ 𝛽0 ≤ 𝛽1 ≤ ⋯ ≤ 𝛽𝑚
 

and 𝒔 is the Laplace operator. 

The Oustaloup approximation is a generalized 

differential action derivator that covers the frequency 

spectrum, ensuring minimal phase behavior and reducing 

differential behavior within a defined restricted 

frequency range based on application needs. 

The approach relies on function approximation 

derived from:  

  𝐻(𝑠) = 𝑆𝛼 , 𝛼 ∈ 𝑅+                                                                     (5) 

The function given in eq 6, represents a rational 

function approximation of a fractional-order differential 

operator. This is often used in control systems and 

fractional calculus when implementing fractional-order 

derivatives, as they are not Integer-Order operators and 

can't be represented directly in a transfer function. 

Podlubny’s in [3] provides a practical way to 

approximate fractional derivatives by creating a rational 

transfer function composed of real poles and zeros, 

which cover a certain frequency range. The purpose of 

this method is to approximate the behavior of a fractional 

derivative across the desired frequency range, thereby 

allowing its implementation using Integer-Order transfer 

functions, which are compatible with conventional 

control design techniques. 

Gf(s) = K ∏
s+wk

′

s+wk

N
k=1                                                               (6) 

The zeros, poles and gain are obtained from: 

𝑤𝑘
′ = 𝑤𝑏 . 𝑤𝑢

2𝑘−1−𝛾

𝑁 , 𝑤𝑘 = 𝑤𝑏 . 𝑤𝑢

2𝑘−1+𝛾

𝑁 , 𝐾 = 𝑤ℎ
𝛾
 

Where 𝑤𝑢 It represents the unity gain frequencies and 

the central frequency of a geometrically distributed 

frequency band.  Let  𝑤𝑢 = √𝑤ℎ𝑤𝑏, where 𝑤ℎ  and 𝑤𝑏 

are respectively the upper and lower frequencies. γ is the 

order of derivative, and 𝑁 is the order of the filter. 

 



Science, Engineering and Technology  Vol. 5, No. 1, pp. 116-125 

 

 

119 

3. Controllers Design 

3.1. Integer order PID controller 

Figure 1 illustrates the feedback control loop of an 

integer order system, depicted as: 

 

Figure 1. Feedback control loop of integer PID controller. 

Where, 𝑈𝑅(𝑠) represents the input signal,              

𝐸(𝑠) denotes the error signal,  𝐶𝑃𝐼𝐷(𝑠) refers to classical 

PID controller’s transfer function, 𝐺(𝑠) represents the 

plant transfer function, 𝑌(𝑠) denotes the output signal, 

and 𝑈(𝑠) corresponds to the controller signal. 

Equation 7 represents the transfer function of a 

Proportional-Integral-Derivative (PID) controller in the 

Laplace domain, which is commonly used in control 

systems to adjust the output of a system to reach a 

desired setpoint.  

𝐶(𝑠) = 𝐾𝑝(1 +
1

𝑇𝑖𝑠
+ 𝑇𝑑𝑠)                                                           (7) 

where: 

• 𝐾𝑝 is the proportional gain, which determines the 

response based on the current error. Increasing 𝐾𝑝 

results in a stronger reaction to the current error 

but can lead to overshoot or oscillations if too 

high. 

• 𝑇𝑖 is the integral time constant. The term 
1

𝑇𝑖s
 

represents the integral action, which considers the 

accumulation of past errors, helping to eliminate 

steady-state errors by gradually adjusting the 

output. 

• 𝑇𝑑 is the derivative time constant. The term 𝑇𝑑𝑠 

represents the derivative action, which considers 

the rate of change of the error, helping to dampen 

the response and reduce overshoot by reacting to 

the speed of the error change. 

 

3.2. Fractional order PID controller 

The structure of the feedback control loop for a 

fractional integer order system is illustrated in Figure 2 

as follows: 

 

Figure 2. Feedback control loop of fractional PID controller. 

Where, 𝐶𝐹𝑃𝐼𝐷(𝑠) is Fractional Controller Transfer 

Function. Equation 8 represents the transfer function of a 

Fractional-Order PID (FOPID) controller. Fractional-

order controllers extend the standard Integer-Order PID 

controllers by allowing non-integer (fractional) orders 

for the integral term only.  

𝐶𝐹𝑃𝐼𝐷(𝑠) = 𝐾𝑝 (1 +
1

𝑇𝑖𝑠𝛼 + 𝑇𝑑𝑠)                                                (8) 

where: 

• 𝐾𝑝 is the proportional gain, similar to the standard 

PID controller. 

• 𝑇𝑖 is the integral time constant, but here it’s 

associated with s𝑠𝛼 instead of just 𝑠. The term 

𝑇𝑖𝑠𝛼 introduces a fractional-order integral action. 

• 𝑇𝑑 is the derivative time constant, same as in the 

Integer-Order PID, associated with the derivative 

term 𝑇𝑑𝑠. 

• 𝛼 is a fractional order (where 0 < 𝛼 < 1), 

allowing more flexibility in tuning the integral 

action. 

 

4. Fractional PID Controller (FPID) of the 

Robot  

The proposed global control approach for managing 

the robot relies on position feedback, as shown in Figure 

3. This system incorporates an outside control loop and 

an inner control loop, each fulfilling distinct functions to 

guarantee accurate and steady placement. 

 

 𝑈𝑅(𝑠) 
𝑌(𝑠) 𝐸(𝑠) 𝑈(𝑠) 

+ 
- 

 𝐶𝑃𝐼𝐷 (𝑠) 

 

 𝐺(𝑠)  𝐺(𝑠) 

 𝑈𝑅(𝑠) 
𝑌(𝑠) 𝐸(𝑠) 𝑈(𝑠) 

+ 
- 

 𝐶𝐹𝑃𝐼𝐷 (𝑠) 

 

 𝐺(𝑠)  𝐺(𝑠) 
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Figure 3. Control scheme for robot control using the FPID 

approach. 

1. Outer Control Loop:  

   - The outer loop is responsible for overall stability and 

robustness of the control system. It begins with a 

reference signal (𝑞𝑑), representing the desired position or 

set-point for the robot.  

- The reference signal is handled by a fractional 

proportional-integral-derivative (FPID) controller, 𝐶𝐹𝑃𝐼𝐷, 

which produces the control input 𝑈 required to direct the 

system toward the desired position.  

- The output of the outer control loop, 𝑈, is passed to the 

inner control loop, which regulates the dynamics more 

intricately connected to the physical structure of the 

robot. 

2. Inner Control Loop:  

- The inner loop is responsible for regulating the 

nonlinear behaviors and dynamic responsiveness of the 

SCARA robot. 

- A nonlinear feedback system is utilized to mitigate the 

robot's nonlinearities, efficiently adjusting for intrinsic 

complexity such as joint friction, link flexibility, and 

other mechanical flaws. 

- The SCARA robot employs the control signal from the 

outer loop and, through nonlinear feedback 

modifications, achieves the target position (𝑞). 

3. Linearized System Model:    

- The system's behavior can be depicted using a 

linearized model, as seen in the figure, to facilitate study 

and enhance clarity. The transfer function  
1

𝑠2+𝐾𝑑1𝑠+𝐾𝑝1
  represents a second-order approximation, 

where 𝐾𝑑 is the velocity gain and 𝐾𝑝 is the position gain.  

This dual-loop control technique ensures precise 

placement of the SCARA robot by integrating an FPID-

based outer loop with a nonlinear feedback mechanism 

in the inner loop, hence maintaining stability and 

responsiveness in the presence of nonlinearities. The use 

of a linearized model enables the optimization of control 

parameters to attain defined performance objectives, 

including the reduction of overshoot, minimization of 

settling time, and elimination of steady-state error. 

 

4.1. Dynamic model of the robot 

This dynamic model can be written in the following 

matrix form [6], [24], [25]: 

 B(q)q̈ + C(q, q̇)q̇ + G(q) = τ                                                   (9)                 

Where 

 B(q) ∈ R3 × R3:  is inertia matrix, 

 C(q, q̇) ∈ R3: Represents the matrix of centrifugal and 

Coriolis components. 

G(q) ∈ R3: Denotes the vector of gravitational forces. 

τ ∈ R3: Represents the control inputs vector (torques 

applied by the actuators). 

𝑞 = (

𝑞1

𝑞2

𝑞3

)   ∈ 𝑅3 represents the vector of joint locations, 

 𝑞̇ = (

𝑞1̇

𝑞2̇

𝑞3̇

) ∈ 𝑅3  is the articular velocities vector, 

 𝑞̈ = (

𝑞1̈

𝑞2̈

𝑞3̈

) ∈ 𝑅3 is the articular accelerations vector,  

 

4.2. SCARA robot linearized model 

The robot's linearized model, incorporating nonlinear 

feedback, is represented by the subsequent equivalent 

transfer function: 

𝐺(𝑠) =
1

𝑠2+𝐾𝑑1𝑠+𝐾𝑝1
                                                                    (10) 

where 𝐾𝑝1 represents the position gain and and 𝐾𝑑1  

represents the velocity gain. 

The SCARA robot parameters are enumerated in 

Table 1. 

 

 

𝑞𝑑                       

           

-       

   

 

𝑞 

 

Linearized system  

Nonlinear 

feedback 

 

𝑈(𝑠) 

 

τ 

Inner control loop 

Outer control loop 

1

𝑠2 + 𝐾𝑑1𝑠 + 𝐾𝑝1
 

+       

   

 

-       

   

 

 𝐶𝐹𝑃𝐼𝐷 (𝑠) 

 
SCARA Robot  
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Table 1. SCARA Robot parameters. 

Segment Segment 0 Segment1 Segment2 Segment3 

Mass [𝐾𝑔]  m0= 19:5 m1 = 8 m2 = 6 m3 = 0:5 

Length [𝑚] d0 = 0:65 d1 = 0:4 d2 = 0:3 d3 = 0:3 

Inertia [kg.𝑚2] I0= 1.0298 I1 = 0.16 I2= 0.0675 I3= 0.0056 

The reference trajectory is: 

𝑞1 = 𝑞2 = 𝑞3 =
10𝜋

180
  sin (2𝜋𝑡)                                               (11) 

The parameters of the robot's linearized model are:  

𝐾𝑝1 = 2500   and  𝐾𝑑1 = 500. 

 

5. Numerical Simulations  

This section provides the simulation results for the 

proposed architecture wich integrates a linearizing 

feedback and the proposed FPID controller.   

The  parameters of PID and FPID controllers are: 

𝐾 = 10, 𝑇𝑖 = 1.5, 𝑇𝐼 = 80 and 𝛼 = 0.5. 

Figures 4 and 5 show the articular reference trajectory 

and the trajectories using the PID and fractional PID 

(FPID) controllers, respectively. 

 
Figure 4.  Comparison of articular reference trajectory  and 

PID controlled trajectory. 

 

 
Figure 5. Comparison of articular reference trajectory  and 

FPID controlled trajectory. 

In comparing Figure 4 (PID approach) and Figure 5 

(FPID approach) for the articular reference trajectory: 

▪ Tracking Accuracy: In Figure 5 (FPID approach), the 

trajectory follows the reference trajectory (green line) 

more closely than in Figure 4 (PID approach). The 

FPID approach shows reduced tracking error, 

especially in the mid-sections of each oscillation 

cycle, indicating improved alignment with the desired 

trajectory. 

▪ Oscillation and Stability: The PID approach in 

Figure 4 exhibits slight deviations in oscillatory 

response, with visible differences in amplitude and 

phase lag. The FPID approach in Figure 5 

demonstrates a more stable response with less 

overshoot and a smaller phase difference, suggesting 

enhanced robustness and stability. 

▪ Amplitude and Phase: The FPID controller better 

maintains the amplitude of the desired trajectory 

across the graphs, while the PID controller shows 

slight discrepancies, especially at the peaks and 

troughs of each cycle. 

Overall, the FPID approach (Figure 5) provides 

smoother and more accurate trajectory tracking 

compared to the traditional PID approach in Figure 4, 

reflecting the advantages of fractional-order control in 

handling complex dynamics. 

Figures 6 and 7 show the articular speed reference 

trajectory and the trajectories using the PID and 

fractional PID (FPID) controllers, respectively.  
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Figure 6. Comparison of articular reference speed  trajectory  

and PID controlled trajectory. 

 

 

Figure 7. Comparison of articular reference speed 

trajectory and FPID controlled trajectory. 

In comparing Figure 6 (PID approach) and Figure 7 

(FPID approach) for the articular speed reference 

trajectory: 

▪ Amplitude Differences: The FPID controller (Figure 

7) appears to have slightly smoother and less 

fluctuating curves than the traditional PID controller 

(Figure 6). This can indicate that the FPID controller 

reduces overshoot or produces a more damped 

response compared to the PID. 

▪ Response Consistency Across Joints: In Figure 6, the 

three joints exhibit similar but slightly varying 

amplitudes and responses. Figure 7, however, shows 

more uniformity in amplitude across all joints, 

suggesting that the FPID may achieve better 

coordination among the joints. 

▪ Initial Response: At the beginning of the time range, 

Figure 7's initial response shows a softer, less 

aggressive curve compared to Figure 6. This could 

imply that the FPID controller provides a more 

gradual acceleration, potentially resulting in less 

stress on the robotic joints. 

▪ Phase Difference: There is a slight phase shift in the 

initial cycles between the PID (Figure 6) and FPID 

(Figure 7) responses, which might indicate that the 

FPID has a different dynamic response time. 

In summary, these differences suggest that the FPID 

controller may provide smoother, more coordinated, and 

possibly less aggressive control over the robotic joints, 

which might be beneficial in applications requiring 

precise and gentle movement. Let me know if you’d like 

further analysis or additional details. 

Figure 8 illustrates the torque of the robot utilizing 

the PID controller, whereas Figure 9 depicts the torque 

of the robot employing the FPID controller.  

 
Figure 8. Torques of the PID controller. 

 

 
Figure 9. Torques for the FPID controller (𝛼 = 0.5). 
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In comparing Figure 8 (PID approach) and Figure 9 

(FPID approach) for the articular speed reference 

trajectory: 

▪ Response Smoothness: The PID-controlled system 

(Figure. 8) shows smoother waveforms with larger 

oscillations and slower settling times. This suggests 

that the PID controller may provide adequate control 

but allows some degree of overshoot or oscillation, 

which takes time to damp out. 

▪ Response Oscillations: The FPID-controlled system 

(Figure. 9) shows a more oscillatory behavior at a 

higher frequency but with reduced amplitude. This 

typically indicates that the FPID controller is 

introducing higher-frequency adjustments, which 

may help reduce steady-state error and improve 

precision. 

▪ Amplitude and Stability: In Figure 9, the oscillations 

in the FPID control response appear to dampen more 

quickly than in Figure 8, implying that the FPID 

controller might be more effective in quickly 

reducing error. The finer oscillations may mean the 

FPID is adjusting the control action more frequently, 

a characteristic often beneficial for precision tasks in 

robotics. 

▪ Settling Time: Overall, the FPID response suggests 

potentially faster stabilization (settling time) when 

compared to PID, a key advantage of fractional-order 

controllers in fine-tuning dynamic systems. 

In summary, Figure 8 (PID) control results in 

smoother but slower stabilization, while Figure 9 (FPID) 

control provides quicker damping of oscillations, 

potentially leading to a faster and more precise response. 

This makes FPID potentially advantageous for 

applications in SCARA robots where high precision and 

fast response are critical. 

Table 2 provides a performance comparison between 

the proposed FPID controller and the classical APID 

controller for controlling a SCARA robot. Table 2 

summarizes the transient response stability parameters, 

including overshoot (OS[%]), settling time (𝑇𝑠[s]), and 

delay time (𝑇𝐷[s]), for different configurations of the 

FPID with varying values of the fractional parameter 𝛼. 

As can be seen from the table: 

▪ Overshoot: The FPID controller shows a range of 

overshoot values based on α\alphaα. Generally, the 

FPID with 𝛼 = 0.3 has a slightly higher overshoot 

(0.23) than the baseline FPID (0.21), but it remains 

lower than the APID's overshoot of 0.311. The 

overshoot varies slightly as 𝛼 changes, with values 

ranging from 0.21 to 0.27. 

▪ Settling ime: The FPID controller has a faster settling 

time than the APID. The FPID settles in around 0.27 

seconds across varied 𝛼 values, while the APID takes 

longer at 0.48 seconds. 

▪ Delay Time: The FPID controller also features 

shorter delay lengths, ranging from 0.0011 to 0.0015 

seconds, compared to the APID's delay time of 0.004 

seconds. This implies enhanced reactivity of the 

FPID. 

 

Table 2. Transient response stability parameters  

Controller 

 

OS[%]  𝑻𝒔[s] 𝑻𝑫[s] 

APID 0.311 0.48 0.004 

FPID 

(α=0.1) 

0.21 0.272 0.0012 

FPID (𝛼 = 0.3) 0.23 0.273 0.0011 

FPID (𝛼 = 0.5) 0.22 0.271 0.0013 

FPID (𝛼 = 0.7) 0.27 0.277 0.0015 

FPID (𝛼 = 0.9) 0.26 0.278 0.0014 
 

Overall, the proposed FPID controller enhances 

transient performance by reducing overshoot, settling 

time, and delay time, and these benefits are sustained 

throughout a wide range of fractional orders. This makes 

it a viable alternative to conventional APIDs for better 

SCARA robot control. 

 

6. Conclusion  

This study decreases temporal lag while tracking 

variable trajectories using a typical PID controller by 

including a fractional integrator into the PID design. This 

update aimed to reduce latency and enhance asymptotic 

tracking by using the improved dynamic features of 

fractional-order systems, as established in previous 

studies. Simulation findings reveal that the proposed 

fractional-order PID (FPID) controller outperforms the 

traditional APID controller in terms of trajectory 

tracking accuracy, tracking error reduction, stability 

enhancement, and oscillation and overshoot avoidance. 

Unlike the APID, which has amplitude and phase 

variations, the FPID provides a more consistent and 

reliable response.  
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Additionally, the proposed FPID controller 

outperforms the PID controller in maintaining constant 

amplitude, particularly at cycle peaks and troughs, which 

leads to better amplitude regulation and phase alignment. 

It produces smoother, less variable speed reference 

trajectories that exhibit improved damping and less 

overshoot. The proposed FPID improves uniformity and 

synchronization across joints, which is critical for correct 

robotic motions, while its gentler initial reaction reduces 

joint stress, extending system life. 

Furthermore, the proposed FPID controller has a 

different dynamic reaction time than the PID controller, 

as shown by the phase shift, which is beneficial in 

circumstances requiring precise phase alignment. It 

increases tracking accuracy, stability, and consistency 

while lowering component stress. This approach may be 

used to a variety of fractional and integer-order systems 

to increase performance and noise rejection, making it 

especially helpful in complex control applications such 

as robotics, where precision and reliability are crucial. 
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