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Abstract 

Alzheimer’s disease (AD) is a chronic, progressive neurodegenerative disorder that typically affects elderly 

individuals. Detecting Alzheimer’s using plasma proteins is a critical step toward improving treatment results for this 

disease. This study aims to use computational algorithms to explore the relationship between plasma proteins and AD 

progression by identifying a panel of plasma proteins that can serve as biomarkers for tracking and diagnosing AD. We 

applied two feature selection methods, Sequential Backward Feature Selection (SBFS) and Analysis of Variance 

(ANOVA) to extract significant proteins from a dataset of 146  proteins. The data was collected from the plasma of 566 

individuals, comprising both Alzheimer’s patients and healthy controls. The SBFS technique generated all possible 

combinations of protein groups from the 146 proteins, which were then trained and tested using five machine learning 

models: Decision Tree, Random Forest, Extremely Randomized Trees, Extreme Gradient Boosting, and Adaptive 

Boosting. Subsequently, ANOVA was applied to refine and reduce the selected panel size. Finally, we used XGBoost 

and AdaBoost models to validate the final panel. The findings introduce a plasma protein panel consisting of A2Macro, 

BNP, BTC, PPP, and PYY proteins for diagnosing AD. This panel achieved a sensitivity of 88.88%, a specificity of 

66.66%, and an AUC of 0.85. These results demonstrate that plasma protein biomarkers can facilitate timely 

interventions, potentially slowing disease progression and improving patient outcomes. This non-invasive and 

affordable diagnostic method has the potential to make Alzheimer’s screening accessible to a broader population. 
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1. Introduction 

Alzheimer’s disease (AD) is a chronic, progressive 

neurodegenerative disorder that typically affects 

individuals aged 60 years and older [1]. Alzheimer’s is 

gradient degeneration of the essential cognitive activities 

such as memory, thinking, and cognition [2]. Generally, 

AD is characterized by the gradient death of nerve cells, 

which is caused by the accumulation of extracellular 

amyloid-β (Aβ) plaques and interneuronal neurofibrillary 

(NFL) tangles composed of forms of the Tau-protein [3]. 

Diagnosing AD is a complicated process that involves a 

combination of neuropsychological assessments, blood 

tests, cerebrospinal fluid (CSF) analysis, and 

neuroimaging. These biomarkers require careful 

evaluation to exclude the other neurodegenerative 

disorders that share similar symptoms with AD. However, 

despite the effectiveness of PET and CSF biomarkers in 

the clinical diagnostic process for AD, the high cost of 

PET scans and CSF tests restricts their accessibility and 

generalizability as diagnostic tools [4]. These limitations 

could be countered by the use of blood protein biomarkers 

in AD diagnosis [5]. Blood testing is a well-established 

part of clinical practice, as it is easy to perform, safe, and 

does not require additional training for healthcare 

professionals [6], [7]. Blood is a complex liquid tissue 
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composed of cells and extracellular fluid. It contains a 

diverse array of molecules, including proteins, nucleic 

acids, lipids, and other metabolic products, which can be 

observed in plasma, serum, and cellular compartments 

[8]. Brain-derived biomarkers are typically present at 

relatively low concentrations in the blood, due to the 

blood-brain barrier (BBB), which restricts the free 

passage of molecules between the central nervous system 

(CNS) and blood [9]. However, the progressive damage 

to the BBB in AD patients may allow some proteomics 

molecules to pass into the blood, thereby enabling the 

possibility of diagnosing patients with AD and the 

progression of the disease based on plasma proteins. 

Several studies have attempted to identify blood 

biomarkers associated with AD by profiling a wide range 

of proteins in the blood and investigating their correlation 

with AD progression. For example, Ray et al. [10] 

proposed 18 proteins in blood plasma that can be used to 

classify blinded samples from Alzheimer’s and control 

subjects with close to 90% accuracy using an 

unsupervised clustering algorithm called Shrunken 

centroid algorithm. Thambisetty et al. [11] discovered a 

panel of 15 plasma proteins that were differentially 

expressed in AD using the correlation analyses method. 

O’Bryant et al. [12] identified a panel with 30 serum 

proteins with sensitivity (SN) of 88%, specificity (SP) of 

82%, and area under receiver operating curve (AUC) of 

0.91. Laske et al [13] used a support vector machine 

(SVM) classifier to identify a panel of 3 serum markers of 

AD with 93.8% sensitivity, and 80.0% specificity. Llano 

et al. [14] developed a classifier model and identified 4 

different proteomic signatures with 86.5% SN, 84.2% SP, 

and AUC of 0.85. Guo et al. [15] applied Six algorithms, 

Linear Discriminant Analysis (LDA), Logistic Regression 

(LR), Partial Least Squares (PLS), Random Forests (RF), 

Nearest Shrunken Centroids (NSC), and Support Vector 

Machine (SVM) to identify the 5 plasma panels of AD 

using SPSS and logistic regression analysis software and 

achieved 89.36% of sensitivity and 79.17% of specificity. 

Morgan et al. [16] developed a method based on LR for 

identifying a panel with 5 inflammatory markers in 

plasma with 84% SN, 70% SP, and AUC of 0.79. Stamate 

et al [17] proposed a study that evaluated the use of Deep 

Learning (DL), RF, and extreme gradient boosting 

(XGBoost) algorithms for AD classification and achieved 

an AUC of 0.88 with XGBoost and 0.85 with DL and RF. 

Zhao et al. [18] identified a panel with 12 serum markers 

using multivariate RF machine learning with 90% SN and 

66.7% specificity. More recently, Eke et al. [19] 

developed a method based on SVM to identify plasma-

based biomarkers for early AD detection, by using feature 

selection and evaluation modalities, 5 panels were 

identified that achieved sensitivity (SN) > 80%, 

specificity (SP) > 70%, and AUC of at least 0.80. 

However, most of these studies used no more than one 

feature selection technique, making the panels generated 

by these techniques unstable and unreliable as biomarkers 

for AD, thereby highlighting the need for further 

investigation and scrutiny.  

The main objective of this study is to use 

computational algorithms to identify a panel of plasma 

proteins that can serve as biomarkers for AD detection. 

This study aims to introduce a novel plasma protein panel 

for the accurate diagnosis of AD using Sequential 

Backward Feature Selection (SBFS) techniques utilized 

with five ML models: Decision Tree (DT), Random 

Forest (RF), Extremely randomized trees (Extra Trees), 

eXtreme Gradient Boosting (XGBoost), and Adaptive 

Boosting (AdaBoost).  

Proteins often play a role in biological activities within 

the body that change during the progression of AD, 

making them valuable indicators and biomarkers. By 

computing protein concentrations in the plasma of AD 

patients, we can identify proteins associated with the 

disease and develop a practical, cost-effective algorithm 

for its diagnosis. This study has significant implications: 

diagnosing AD using the selected protein panel enables 

timely interventions that can slow disease progression and 

improve patient outcomes. Furthermore, by focusing on 

plasma-based biomarkers, the study emphasizes a non-

invasive, scalable, and affordable diagnostic method, 

making AD screening accessible to a broader population. 

The rest of this paper is organized as follows: Section 

2 presents the materials and methods, including the 

dataset description, an introduction to the machine 

learning (ML) algorithms, panel validation process, and 

feature selection techniques used. Section 3 presents the 

results, including the outcomes of the Sequential 

Backward Feature Selection (SBFS) technique, one-way 

Analysis of Variance (ANOVA) outcomes, and the results 

of the classification models that were used for the 

validation of the selected plasma protein panel. The 

discussion of the results is in Section 4. Section 5 draws 
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important conclusions, and outlines potential directions 

for future research. 

 

2. Materials and Methods 

2.1.  Data description  

This study used samples collected by the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) to qualify 

multiplex panels in plasma proteomics. ADNI provides 

unlimited data access and encourages researchers to 

develop potential methods for analyzing the progression 

of AD [20].  

The data lists 566 subjects, which represent baseline 

data on the concentration of 146 blood plasma proteins 

derived from a cohort of 112 Alzheimer’s disease (AD) 

patients, 396 mild cognitive impairment (MCI) patients, 

and 58 healthy controls (HC). The available 

neuropsychological assessments in ADNI, such as the 

Mini-Mental State Examination (MMSE) and Clinical 

Dementia Rating (CDR), were used to categorize the 

clinical groups. A list of the 146 proteins is provided in 

the supplementary materials. Table 1 presents the 

demographics of the baseline subjects. 

Table 1. Demographics of the baseline subjects. 

Group  HC MCI AD 

Nbr baseline 58 396 112 

Age 75.3 (62-90) 74.9 (55-90) 75.4 (55-89) 

Gender M/F 30/28 256/140 65/47 

MMSE  28.9 (25-30) 27.0 (23-30) 23.6 (20-27) 

 

2.2. Machine learning algorithms 

2.2.1. Decision Tree 

DT is a hierarchical supervised machine learning 

algorithm that employs decision rules to divide the feature 

space of a dataset into subsets belonging to a single class. 

It achieves this by recursively partitioning the feature 

space of the training data to determine an optimal set of 

decision rules [21]. 

Feature selection methods are employed to identify the 

most effective partitions that separate different classes. 

Entropy (E) and Information Gain (IG) are used to 

evaluate each node within the decision tree. The feature 

with the highest Information Gain or the lowest Entropy 

is chosen as the optimal candidate for splitting the data at 

a given node. The formula for entropy is as follows: 

𝐸 = − ∑ 𝑝𝑖log(𝑝𝑖)𝑛
𝑖=1                                             (1) 

Where the Pi are the ratios of elements of each class. 

The formula for Information Gain (IG) is as follows: 

𝐼𝐺 = 𝐸𝑝𝑎𝑟𝑒𝑛𝑡−𝐴𝑣𝑒𝑟𝑎𝑔𝑒( 𝐸𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛)                     (2) 

 

2.2.2. Random Forest 

RF is an ensemble learning algorithm that enhances 

prediction accuracy by combining multiple decision trees. 

Each decision tree in the Random Forest is built using a 

bootstrapped sample of the training data, ensuring that 

every sample has an equal probability of being chosen. 

The algorithm selects a random subset of the training data 

with the replacement for constructing each tree. In the 

ensemble, every tree operates as an independent classifier, 

predicting the class label of an unlabeled instance. The 

final classification decision is made using a majority 

voting technique, where the most frequent prediction 

among the trees determines the output [22], [23]. 

 

2.2.3. Extremely Randomized Trees  

The Extra Trees algorithm is an ensemble learning 

method that leverages decision tree principles for both 

classification and regression tasks. During the tree-

building process, Extra Trees randomly selects split points 

at each node to construct multiple decision trees. Each tree 

is built using a randomly sampled subset of the data 

without replacement, ensuring that each tree has unique 

samples. A random subset of features is selected for each 

tree from the total feature set. The entire dataset is used to 

build the trees, enhancing efficiency. By combining 

random splits and aggregating the results from multiple 

trees, Extra Trees reduces computational costs, improves 

processing speed, and performs effectively on large, high-

dimensional datasets. 

 

2.2.4. Extreme Gradient Boosting  

XGBoost is a flexible supervised learning algorithm 

known for its fast execution and support for parallel 

computing. XGBoost introduces a regularized model 

formulation to control overfitting, achieving better 

performance results. During the boosting process, each 

new model learns from the errors of previous iterations, 

creating trees sequentially. Each decision tree is adjusted 
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to address the mistakes of the prior model. This tree 

ensemble approach enhances the predictive power 

compared to a single decision tree, enabling boosting to 

overcome the limitations of poor predictive performance. 

Additionally, random sampling in the XGBoost model 

reduces the variance of the final model. It improves 

prediction accuracy by using only a random subset of the 

data to fit each new tree [24]. 

 

2.2.5. Adaptive Boosting 

AdaBoost algorithm is an ensemble learning method 

designed to improve the predictive performance of weak 

classifiers by combining them into a strong classifier. It 

works iteratively, adapting to the data at each step. 

Initially, all training samples are assigned equal weights. 

A weak classifier is then trained to minimize the 

classification error on the weighted dataset. After training, 

the algorithm calculates the error of the classification and 

assigns it a weight based on its performance. The weights 

of the training samples are then updated to emphasize 

those that were misclassified, making them more 

influential in the next iteration. This process is repeated 

for a predetermined number of iterations or until the 

desired accuracy is achieved [25]. 

 

2.3. Feature selection techniques 

2.3.1. Sequential backward feature selection  

SBFS is a feature selection technique that uses a top-

down search approach to exclude features iteratively. It 

begins with the full feature set, involving all the features, 

and applies the basic Sequential Backward Selection 

(SBS) method. Features are progressively excluded, and 

at each iteration, the most significant feature from the 

remaining set is conditionally included if it improves the 

performance of the previous subsets. This process 

continues until the optimal feature subset is identified 

[26]. In the first step, the SBFS technique was applied 

iteratively to train five machine learning classifiers: 

Decision Tree (DT), Random Forest (RF), Extremely 

Randomized Trees (Extra Trees), Extreme Gradient 

Boosting (XGBoost), and Adaptive Boosting (AdaBoost). 

The technique evaluated all possible subset combinations 

of the 146 proteins for each classifier. For each ML 

model, the accuracy was recorded to identify the subsets 

of proteins that achieved the best classification 

performance. By the end, five combinations of significant 

features, each corresponding to the results of one of the 

ML algorithms, were improved as the most relevant for 

Alzheimer's disease classification. Figure 1 presents the 

SBFS diagram. 

 

Figure 1. Diagram of the sequential backward feature 

selection technique. 

 

2.3.2. One-way analysis of variance  

ANOVA is a statistical technique used to analyze the 

differences between group means and their associated 

variances. It helps determine whether at least one group's 

mean is significantly different from others. ANOVA can 

help reduce the dimensionality of a dataset by identifying 

features that have a significant relationship with the target 

variable. 

The second step of the framework involved using one-

way ANOVA to reduce the size of the panels obtained 

from the first step of the feature selection by comparing 

the means and the variances of each protein in two clinical 

groups, HC and AD. This particular application of 

ANOVA enabled the exclusion of irrelevant proteins or 

those not associated with AD from the panels, 

specifically those with similar concentration values 

in the two groups. ANOVA provides an F-statistic and a 

p-value as results. A threshold (p-value=0.05) was applied 

to determine whether to reject or retain features. Features 

with non-significant p-values (high p-values) were 

excluded, as they did not contribute to distinguishing 

between the classes. While features with significant p-

values (low p-values) were retained on the protein panel. 

The null hypothesis (H₀) states that the means of the two 

groups (HC and AD) are equal, indicating no statistically 

significant difference in the tested feature (protein). In 

such cases, the feature was eliminated from the panel. The 

alternative hypothesis (H₁) states that the means of the two 

groups are different, indicating a statistically significant 

difference. These features were kept in the panel. This 

statistical analysis was applied to all features selected in 
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the first step, enabling the identification of a plasma 

protein panel for AD prediction. We performed this 

statistical analysis with all the features that had been 

selected in the first step.  

 

2.4. Panel validation process 

The panel validation process evaluates the robustness, 

accuracy, and generalizability of the selected plasma 

protein panel using two ML algorithms: XGBoost and 

AdaBoost. The dataset was split into training and testing 

subsets, with 80% allocated for training the models and 

20% for testing. To reduce the risk of overfitting and 

enhance predictive performance, five-fold cross-

validation was employed. The effectiveness of the models 

was assessed using key performance metrics, including 

sensitivity (the ability to correctly identify AD patients), 

specificity (the ability to correctly identify healthy 

controls), accuracy (the overall prediction correctness), 

and the Area Under the Curve (AUC), which measures the 

ability of ML models to distinguish between AD and 

healthy controls. These metrics provided a comprehensive 

evaluation of the predictive performance achieved with 

the selected protein panel. The primary goal of the panel 

validation process is to confirm that the selected plasma 

protein panel serves as a reliable and accurate tool for 

early-stage AD diagnosis, highlighting its potential for 

clinical application. Figure 2 illustrates an overall diagram 

of the framework, which includes the three steps. 

 

Figure 2. Proposed framework diagram. 

3. Results 

3.1. SBFS technique outcomes 

In the first step, the SBFS technique generated subsets 

(groups of proteins) from the 164 proteins available in the 

dataset. Each subset was trained and tested using the ML 

models (DT, RF, Extra Trees, XGBoost, and AdaBoost). 

Table 2 presents the preselected proteins for each ML 

model along with their achieved accuracies, while Figure 

3 and Figure 4 illustrate the overall results of the SBFS 

technique, showing the evaluation accuracies as a 

function of the subset size. The SBFS technique selects 

the group of proteins that achieves the highest accuracy 

for each group size. Proteins yielding accuracies greater 

than 90% are accepted, while those producing results 

below 90% are eliminated. From the results, the DT and 

RF classifiers achieved accuracies below 90%. However, 

the Extra Trees, XGBoost, and AdaBoost models 

achieved accuracies of 90.58%, 93.52%, and 95.88%, 

respectively. The selected proteins for the second step 

constitute the combination of proteins that achieved more 

than 90% accuracy in the classification process. This 

includes all protein groups identified by the Extra Trees, 

XGBoost, and AdaBoost classifiers. The selected proteins 

are A1Micro, Apo A-II, BTC, CD5L, Cystatin-C, IL-16, 

PLGF, Proinsulin-Intact, Proinsulin-Total, PYY, TECK, 

TN-C, ACE, A-IV, Apo B, Apo E, BMP-6, BNP, IgM, 

IL-8, MIP-1 alpha, SGOT, Sortilin, AGRP, CA-19-9, 

FRTN, HGF, IFN-gamma, PPP, RAGE, Transferrin, 

TTR, and VKDPS. 
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Table 2. Preselected proteins from SBFS for ML models with their best-achieved accuracies. 

Machine learning Preselected proteins* Accuracy 

Decision tree  Apo A-II, AXL, I-309, IL-16, MDC, PLGF, PPP, PRL, and Sortilin 86.47% 

Random forest Apo A-II, Apo A-IV, Apo B, Apo E, Apo H, Cystatin-C, IL-16, MIGI, MIP-1 alpha, 

NGL, PLGF, PYY, TIMP-1, and TTR 

89.41% 

Extra trees  A1Micro, Apo A-II, BTC, CD5L, Cystatin-C, IL-16, PLGF, Proinsulin-Intact, 

Proinsulin-Total, PYY, TECK, TN-C 

90.58% 

XGBoost A1Micro, ACE, Apo A-II, Apo A-IV, Apo B, Apo E, BMP-6, BNP, BTC, CD5L, IGM, 

IL-16, IL-8, MIP-1 alpha, PYY, SGOT, Sortilin, TN-C. 

93.52% 

AdBoost  AGRP, Apo A-II, Apo B, Apo E, BMP-6, BNP, BTC, CA-19-9, FRTN, HGF, IL-16, 

IFN-gamma, PPP, Proinsulin-Total, PYY, RAGE, Transferrin, TTR, VKDP. 

95.88% 

(*) Abbreviation of the preselected proteins: 

Apo A-II: Apolipoprotein A-II. 

AXL: AXL Receptor Tyrosine Kinase. 

I-309: T Lymphocyte-Secreted Protein I-309.  

IL-16: Interleukin-16. 

MDC: Macrophage-Derived Chemokine. 

PLGF: Placenta Growth Factor. 

PPP: Pancreatic Polypeptide.  

PRL: Prolactin. 

Apo A-IV: Apolipoprotein A-IV. 

Apo B: Apolipoprotein B. 

Apo E: Apolipoprotein E. 

Apo H: Apolipoprotein H. 

MIGI  Monokine Induced by Gamma Interferon. 

MIP-1 alpha: Macrophage Inflammatory.  Protein-1 alpha. 

NGL: Neutrophil Gelatinase-Associated Lipocal. 

PYY: Peptide YY.  

 

BTC: Betacellulin. 

TECK: Thymus-Expressed Chemokine.  

TN-C: Tenascin-C.   

ACE: Angiotensin-onverting Enzyme.   

BMP-6: Bone Morphogenetic Protein 6.  

BNP: Brain Natriuretic Peptide.  

IGM: Immunoglobulin; IL-8: Interleukin-8.  

SGOT: Serum Glutamic Oxaloacetic Transaminase. 

AGRP: Agouti-Related Protein.  

CA-19-9: Cancer Antigen 19-9.  

FRTN: Ferritin; HGF: Hepatocyte Growth Factor. 

IFN-gamma: Interferon gamma Induced Protein 10. 

PPP: Pancreatic Polypeptide; RAGE: Receptor for advanced 

glycosylation end.  

VKDPS: Vitamin K-Dependent Protein S.  

TIMP-1: Tissue Inhibitor of Metalloproteinases 1. 

TTR: Transthyretin; 1Micro: Alpha-1-Microglobulin. 
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Figure 3. Results of SBFS for AD vs. HC. Performance accuracy as a function of the subset size for: (a) decision tree model, 

(b) random forest model, and (c) extra trees model. 
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Figure 4. Results of SBFS for AD vs. HC. Performance accuracy as a function of the subset size for: (d) gradient boost model 

and (e) AdaBoost model. 

 

3.2. ANOVA outcomes 

The purpose of the ANOVA test was to determine 

whether to retain or exclude each preselected protein. For 

this, the two clinical groups, AD and HC, were separated, 

and a one-way ANOVA test was performed for each 

preselected protein. Proteins with high p-values between 

the classes were excluded, while those with low p-values 

were retained based on a threshold of (p-value =0.05). 

This process enabled the exclusion of all proteins with 

non-significant p-values and the creation of a final plasma 

protein panel containing only the significant proteins. 

Table 3 presents the result of the one-way ANOVA test. 

The final plasma protein panel selected consists of five 

proteins, namely A2Macro, BNP, BTC, PPP, and PYY. 

Table 3. Panel selected by one-way ANOVA test for 

proteins that achieved a P-value<0.05. 

Protein P-value 

A2Macro Alpha-2-Macroglobulin 0.016 

BNP Brain Natriuretic Peptide   0.014 

BTC Betacellulin 0.013 

PPP Pancreatic Polypeptide 0.025 

PYY Peptide YY 0.003 

 

3.3. Outcomes of the classification models 

We chose two machine learning algorithms, namely 

XGBoost and AdaBoost, to test and validate the selected 

protein panel. The performance parameters were 

measured using 5-fold Cross-validation including 

accuracy, sensitivity, specificity, and AUC. Both models 

achieved the same test accuracy of 76.47%, with slightly 

different values in other performance metrics. 

Additionally, the XGBoost model yielded an AUC of 

0.85, while the AdaBoost model achieved only 0.78. 

Table 4 presents the performance metrics of the two 

machine learning by using a selected panel. Figure 5 

shows the receiver operator characteristic (ROC) curves 

of the XGBoost and AdaBoost models.  

Table 4. Performance metrics of the XGBoost and AdaBoost 

models using plasma protein panel selected (A2Macro, BNP, 

BTC, PPP, and PYY). 

Machine 

learning 

Accuracy Sensitivity Specificity AUC 

XGBoost 76.47% 81.81% 66.66% 0.85 

AdaBoost 76.47% 88.88% 62.50% 0.78 
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Figure 5. Receiver Operator Characteristic (ROC) curves of the classification models using plasma protein panel selected 

(A2Macro, BNP, BTC, PPP, and PYY). (a) XGBoost model and (b) AdaBoost model. 
 

4. Discussion 

There is a significant need for a fast and cost-effective 

method to diagnose AD patients. Therefore, our study 

aimed to identify an optimal panel of blood protein 

biomarkers that could serve as a first-line diagnostic tool. 

We proposed a novel non-amyloid plasma panel 

consisting of five proteins: A2Macro, BNP, BTC, PPP, 

and PYY, for AD diagnosis. We used the SBFS technique 

to train five ML algorithms, followed by one-way 

ANOVA analysis, to extract five significant proteins for 

our panel from a dataset containing 146 proteins. SBFS is 

a reliable process as it incorporates all possible protein 

combinations during the training of ML models. 

However, it requires complex computations and 

consumes substantial time. Our findings are consistent 

with several recent studies that aimed to identify blood 

proteins associated with AD. For instance, A2Macro, 

BNP, and PYY proteins were identified in the panel 

proposed by Liano et al. and Eke et al. [14], [19], while 

PPP and BTC proteins were selected in the study 

conducted by Liano et al. [14]. However, the current study 

proposes a smaller panel size compared to many panels 

suggested in previous studies. For example, Eke et al. 

proposed a panel with six proteins [19], and O’Bryant et 

al. identified 30 proteins for AD detection [12]. The 

smaller size of the panel makes it more interpretable and 

less costly to implement in practical applications, such as 

machine learning applications. We tested and validated 

the proposed panel using XGBoost and AdaBoost 

classifiers. The XGBoost model achieved an AUC of 

0.85, indicating its ability to distinguish AD patients from 

the control group. While, the AdaBoost classifier 

achieved a specificity of 88.88%, suggesting that the 

model is more accurate in the classification of AD group 

than the HC group. Table 5 provides a comparison 

between our results and the recent related works. 

 

Table 5. Comparison of our findings with recent related works. 

Author Algorithm Panel Results 

   SN SP AUC 

Eke C.S. et al. [19] SVM Apo E, PYY, SGOT, A2M, BNP, EoT3 and RAGE 88.9 73.8 0.89 

Zhao X. et al. [18] RF 12 miRNA 90.0 67.0 0.77 

Stamate D. et al. [17] 

XGBoost 

20  ranked metabolites 

- - 0.88 

RF - - 0.85 

DNN - - 0.85 

Morgan et al. [16] LR - 84.0 70.0 0.79 

Habbiburr R et al. [27] LR/LASSO* Apo E, AMBP, C3, IL-16, IGFBP2 and Apo D - - 0.85 

Tianchi Z et al. [28] LASSO Apo E, CgA, CRP, CCL26, CCL20, Nr-CAM, and PYY - - 0.77 

Current study 
XGBoost 

A2Macro, BNP, BTC, PPP, and PYY 
81.81 66.66 0.85 

AdaBoost 88.88 62.5 0.78 

*Lasso: Least Absolute Shrinkage and Selection Operator 
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It is crucial to interpret our findings while considering 

certain limitations. Our study focused on AD patients and 

healthy controls, excluding other AD stages such as early-

MCI, MCI, and late-MCI. Therefore, more extensive 

studies are required, particularly with a larger dataset that 

includes all these categories of subjects. Additionally, the 

small size of the available dataset led to higher variance 

as it did not fully represent the diversity of individuals, 

potentially limiting the ability to generalize the model to 

new data.  

The main findings of the current study confirm that 

plasma proteins can be used as a biomarker signature for 

diagnosing AD patients. We identified a panel of five 

proteins that can be effectively used with machine 

learning algorithms to predict AD. These findings 

facilitate the diagnostic process, and we highly 

recommend using this panel as a first-line diagnostic tool. 

 

5. Conclusion 

This study focused on exploiting the ML algorithms to 

identify a robust panel of plasma proteins associated with 

AD detection. Through the application of two feature 

selection techniques SBFS followed by one-way 

ANOVA, we successfully extracted a significant protein 

panel from a dataset of 146 non-Amyloid-β and non-Tau 

proteins. The identified panel, consisting of five proteins 

(A2Macro, BNP, BTC, PPP, and PYY), demonstrated 

strong potential as reliable biomarkers for AD detection. 

The validation process, using XGBoost and AdaBoost 

models, achieved a sensitivity of 88.88%, a specificity of 

66.66%, and an AUC of 0.85, further emphasizing the 

effectiveness of the panel. These results confirm that the 

proposed plasma protein panel could serve as a non-

invasive and cost-effective diagnostic tool for AD, 

significantly accelerating diagnosis and enabling timely 

interventions. This study has certain limitations. The 

dataset used in this research was relatively small, which 

may limit the generalizability of the findings. In future 

work, we will focus on the validation of the plasma 

protein panel using larger and more diverse datasets. 

Additionally, we will compare our findings with panels 

extracted from CSF to confirm the association between 

the identified proteins and AD. Furthermore, we will 

expand the evaluation techniques to include multiclass 

classification tasks and to determine the protein 

concentration levels for each class. These efforts will help 

refine the diagnostic framework and enhance its 

applicability for broader clinical use.  
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