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Abstract 

To responsibly fulfill the world's expanding electrical energy needs, renewable energy sources are now essential. 

Future energy policies must include these sources—like solar and wind energy—because they lower carbon emissions 

and save the environment. The optimal location and sizing of renewable distributed generators (OLSRDG) in the 

microgrid are determined in this study by applying one of the universal bio-inspired techniques and one of the swarms’ 

algorithms. With lower power losses, an improved voltage profile, increased dependability, and stability, the goal is to 

improve energy efficiency and lessen reliance on the main grid while also enhancing the grid's overall performance and 

stability. The acquired results are promising and show the efficacy and resilience of the suggested technique in solving 

OLSRDG problems compared to recently published results. The results showed that the optimization process led to loss 

reduction, with the percentage of power loss reduction ranging from 45.387% to 73.89% using the PSO. While the 

percentage of loss reduction using the BAT ranged from 51.78% to 71.57%. 

 

Keywords: bat algorithm, distributed generators, micro-grids, optimal placement and sizing, particle swarm 
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1. Introduction 

The most important concern in today’s life is to meet 

the increased demand for electricity with effective 

utilization of existing networks. Numerous issues 

pertaining to the optimization process arise in energy 

supply systems [1]. One of the most significant issues 

with the system's operation, control, and administration is 

power system scheduling.  

Distributed generation (DG) is the integration of 

multiple relatively small-power electrical energy sources 

into a local distribution network (DN). Due to ongoing 

increases in demand, the liberalization and deregulation 

of the electrical power market, restrictions on pollutant 

emissions, and other factors, DG units have become 

increasingly popular in recent decades. In general, the 

technological consequences of integrating DG units into a 

DN are favorable, as the installation of DG sources 

reduces power losses (PLR), improves voltage quality, 

increases the reliability and efficiency of consumer 

supplies, and reduces pollutant emissions. The capacity, 

type, and location of DG units affect the efficient 

operation and effectiveness of the distribution network 

(DNO) [1]. The goal of optimally positioning and sizing 

DG units is to maximize their benefits and minimize their 

negative impacts on the DN. Consequently, the choice of 

objective function depends on the desired goal. 

DG units are categorized based on the flexibility of 

their location and size. The first type, such as wind 

turbines and small hydro plants, depends on climatic, 
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hydrological, and geographic conditions, with connection 

points optimized within specified network busses. When 

designing new or revamped networks in defined areas, 

optimal placement is feasible. The second type, including 

diesel generators, fuel cells, and microturbines, can be 

installed anywhere in the network with steady power 

output [2]. 

Distributed generation (DG) units are integrated into 

power systems for their technical, economic, and 

environmental advantages. Technically, they reduce 

system losses, enhance voltage and frequency stability, 

improve energy efficiency, strengthen system reliability 

and power quality, and ease congestion in transmission 

and distribution networks. Economically, DG units lower 

facility upgrade costs, fuel expenses, reserve 

requirements, and operational costs, while ensuring 

critical load security and optimal energy pricing [2], [3]. 

Environmentally, they minimize pollutant emissions, 

reduce waste generation, and limit water discharge [4]. 

 

Nomenclature and Abbreviations 

Installing DG units in optimal locations helps 

minimize losses. Renewable DG sources like photovoltaic 

systems (PV) and wind turbines (WT) are often located in 

remote areas, necessitating seamless integration into 

transmission and distribution networks. The primary goal 

of DG is to unify all generation sources to lower losses, 

reduce costs, and decrease greenhouse gas emissions [2]. 

 

2. Literature Review 

Various strategies have been proposed for optimizing 

DG placement and sizing, including analytical methods, 

programming techniques, and modern metaheuristic 

approaches inspired by natural processes [4]. Numerous 

mathematical and intelligent methods have been 

developed and implemented to address the OPSDG 

problem. 

Several analytical methods have been proposed for 

determining the optimal location and size of DGs. Elsaiah 

et al. [5] introduced a power flow-based formulation for 

DG placement and sizing. Similarly, Naik et al. [6], Hung 

and Mithulanantha [7] developed analytical expressions 

to optimize DG placement by minimizing losses from 

active and reactive branch currents. A linear programming 

approach in [8] addresses optimal DG location to 

maximize capacity while adhering to voltage and current 

constraints. 

Recently, population-based methods have been widely 

used for OLSDG optimization. Genetic algorithms (GAs) 

are frequently employed, as highlighted in [9]. A profit-

maximizing approach was proposed in [10], while 

evolutionary programming in [11] focused on reducing 

power losses (PL) and improving efficiency across 

various load models. 

Differential evolution algorithms (DEA) were 

proposed in [12] and [13] to optimize OLSDG and reduce 

PL. Similarly, backtracking search optimization (BTA) 

was applied in [14] and [15] for the same purpose. 

Local swarm intelligence methods have been applied 

to OLSDG optimization. PSO [16] addresses OLSDG 

taking into account load variations in DN, while Artificial 

bee colony (ABC) [17], [18] focuses on loss reduction 

with multiple DG sources. ACO [19] and glowworm 

swarm optimization (GSO) [20] aim to minimize active 

PL and enhance voltage profile. 

BAT BAT algorithm 

BLC Bus location coefficients 

DG Distributed generation 

DN Distribution network 

DNO Distribution network operator 

LSI Loss sensitivity index 

NB Total number of buses 

NDG Total number of DGs 

NG Total number of generators 

OLSRDG Optimal location and sizing of RDG 

PL Powers losses 

PSO Particle swarm optimization  

PV Photovoltaic systems 

RDG Renewable distributed generators 

WT Wind turbines 

Bij Susceptance of the network 

Gij Conductance of the network 

maxi
 

Maximum number of iterations 

J Jaconian matrix 

ns Total number of swarms 

P, Q Injecting active and reactive powers  

Ploss Active power loss 

PDi Active power load at bus i 

,min

DGP max

DGP  Minimum and maximum sizes of a DG 

Pgi Active power generation at bus i 

V Magnitude voltages  
max

iV ,
min

iV  Minimum and maximum limits of voltage  

v , 
maxv  Velocity and Maximum limits of velocity 

R Line resistance 

x Position 

w Weight factor 

  Angle voltages 
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Gravitational search algorithms (GSA) [21], [22] 

address OLSDG by reducing PL, harmonic distortion, and 

gas emissions while improving power quality. Black hole 

optimization (BHO) [23] and wind driven optimization 

(WDO) [24] also target OLSDG for gas emission 

optimization in DN. 

Nature-inspired and bio-inspired methods, including 

grey wolf optimization [25], [26], cuckoo search [27], 

[28], ant lion optimization [29], [30], whale optimization 

[31], [32], bacterial foraging [33], firefly algorithm (FFA) 

[34], [35], dragonfly algorithm (DFA) [36], and moth 

swarm algorithm [37], are used for minimizing the active 

PL and enhancing voltage in DN by optimize the 

placement and sizing DG. 

Population-based algorithms like shuffled frog leaping 

(SFLA) [38], [39], teaching learning-based optimization 

(TLBO) [40], biogeography-based optimization (BG) 

[41], [42], league championship algorithm (LCA) [43], 

harmony search (HS) [44], [45], imperialistic competition 

(ICA) [46], [47], [48], and sine-cosine algorithm (SCA) 

[49], [50] are applied to OLSDG for various objectives 

such as PL reduction and voltage enhancement in DN. 

In [51], [52], [53], authors combined GA with methods 

like PSO, FFA, and DFA to optimize OLSDG in DN 

networks. Similarly, [54] addressed OLSDG by merging 

fuzzy logic with GA, transforming the objective function 

with constraints into a multi-objective fuzzy model. 

Hybrid optimization methods like PSO and GSA, 

GWO and PSO, and ACO and ABC have been proposed 

in [55], [56], [57] to optimize OLSDG units in power 

systems. These multi-objective approaches focus on 

minimizing costs, network losses, and improving the 

voltage profile. 

Real-world distribution networks (DNs) can contain 

hundreds of buses. The variables requiring optimization 

fall into two categories: discrete/integer variables, such as 

bus slots and the number of distributed generation (DG) 

units, and continuous variables, such as voltages and 

power levels. Traditional optimization techniques—

which often depend on differentiating an objective 

function—can struggle to address such complexity. To 

resolve this, so-called biologically inspired methods, 

grounded in principles of natural evolution, were applied 

in this work to explore a wide range of potential solutions. 

These methods are particularly suited to distribution 

network optimization (DNO) problems involving DG, as 

they inherently treat such challenges as combinatorial 

optimization problems due to the vast solution space. 

 

3. Problem formulation 

When accounting for all variables, the number of 

potential combinations requiring evaluation becomes 

exceedingly large—particularly in real-world distribution 

networks, which may encompass thousands of buses. 

However, this complexity can be significantly reduced by 

analyzing specific details of the network’s configuration 

and operational parameters. Furthermore, through the 

methodology used to calculate bus location coefficients 

(BLCs), an initial prioritized list of advantageous 

installation sites can be generated. 

 

3.1.  Preliminary locations of DG 

BLCs can be used to convey the favorability of 

connecting the DG [1], [58]. This method is centered on 

determining how a change in bus injection power affects 

a DN's overall PL. Power flows and PL are impacted by 

voltage variation and the calculation of PL is as follows. 
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The total amount of injected active power in each bus 

can be used to calculate total PL [58]. 
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From Eq. (2), the PL derivation may be determined as 
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Where Pi and Qi are the injecting active and reactive 

powers at bus i; 
iV  

i , 
jV  and 

j are the magnitude and 

angle voltages at bus i and  j, respectively. ia is the set of 

buses connected at bus i; 
ijG and 

ijB  are the conductance 
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and susceptance of the network, and NB is the total 

number of buses.  

 

3.2. Loss sensitivity index 

The Loss Sensitivity Index (LSI) identifies optimal 

locations for distributed generation (DG) deployment by 

evaluating power losses at network buses and their 

sensitivity to compensation. To determine these sites, 

active and reactive power losses (PL) are calculated for 

each bus, with priority given to buses exhibiting the 

highest losses. Integrating DG units at high-loss buses 

maximizes loss reduction. LSI quantifies the relationship 

between loss variation and the compensation provided by 

DG placement, effectively ranking locations based on 

their potential to improve efficiency. By narrowing the 

search to the most impactful buses, LSI streamlines the 

optimization process, reducing computational effort and 

DG implementation costs while minimizing overall 

system losses [2]. Additionally, LSI values act as Bus 

Location Coefficients (BLCs), serving as indicators of 

favorable DG connection points [1], [59]. 
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  is the weight factor that depends on the network's 

( xr ). There is a wide range in the resistance and 

reactance ( xr ) ratio of feeders and transformers in DN. 

The method used here suggests that the weight factor w is 

calculated for each bus separately in DNs with a wide 

variety of xr  ratio. The PL in the corresponding line are 

greatly affected by changes in the injection power in a 

given bus due to the radial topology of the network as well 

as the relatively small power [1]. 

 

3.3. Objective function 

The objectif taken in this paper is the active PL in 

(MW), it can be expressed as follows  

2

1

i

NB

i

iloss IRP 
=

=                                                                          (6) 

In equation (6), 
iI , and 

iR are, respectively the current 

and the line resistance. 

 

3.4. Constraints 

• Voltage constraints 

maxmin

iii VVV                                                                        (7) 

Where 
iV , min

iV  and max

iV  are respectively, the bus voltage, 

upper and lower limits of voltage at bus i. 

• Power balance constraints 

 
= =
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k

LossDiDGgi PPPP
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Where 
DiDGgi PPP ,,  and 

lossP are respectively, the 

active power generation, the active power of DG, the 

power load and active PL. 

• DG limits  

maxmin

DGDGDG PPP                                                                   (9) 

Where 
min

DGP  and 
max

DGP are, respectively, upper and lower 

limits of DG sizes. 

 

3.5. DGs types 

DG are primarily classified based on the used fuel 

type, the energy source (renewable or non-renewable), the 

generation capacity, the electrical output, etc. [60]. DGs 

are divided into four main kinds according on their ability 

to supply both reactive and active power.  

Type 1: DGs with the ability to exclusively produce 

active power.  

Type 2: DGs with the ability to produce both reactive 

and active power. 

Type 3: DGs with the sole ability to produce reactive 

power. 

Type 4: DGs that can produce active power but also 

use reactive power [60], [61]. 

 

4. Optimization methods 

4.1.  Particle swarm optimization  

Kennedy and Eberhart created the novel optimization 

technique known as PSO [62]. This algorithm, which is 

essentially an evolutionary computation technique, is 

based on the social behavior processes found in a flock of 

birds. It makes use of several particles that come together 

as a swarm. In quest of the global minimum, each particle 

moves across the search space (or maximum). Particles go 
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through a multidimensional search space in a PSO system. 

During flight, each particle adjusts its location based on 

its own experience and that of its nearby particles, 

utilizing the best position that both it and its neighbors 

have found. A particle's swarm orientation is determined 

by the surrounding particles, the particle itself, and its past 

experiences [63]. A particle's best previous position is 

saved and expressed as. Among all the particles, the best 

particle's position is indicated by. The position and 

velocity of each particle can be computed using  















−+

−+
=

+

).(

).(.

)(

22

)(

11

)(

)1(

i

jj

i

jj

i

ji

j
xgbestrandc

xpbestrandcvw
kv                         (10) 

S

i

j

i

j

i

j njvxx .......,3,2,1)1()()1( =+= ++                          (11) 

Where w  represents the factor of inertia weight and 

jv and 
jx represent the particle velocity and current 

position, respectively, at the generation.  The number of 

swarms is indicated by Sn and rand are random numbers 

between 0 and 1. The acceleration constants are denoted 

by 1c and 2c . In general, w  is represented by [64]:    

i
i

ww
ww .

max

minmax
max

−
−=                                                   (12) 

where i denotes the current iterations and maxi denotes 

the maximum number of iterations. The weight of inertia, 

denoted by maxw and minw , drops linearly from 0.9 to 0.4 

in each run.  k is a factor restriction that is obtained from 

the stability analysis of equation (11).  In terms of 

mathematics, k is represented by 

ccc
k

42

2

2 −−−
=  where   21 ccc +=   and 4c              (13) 

In the above procedures, the particle velocity is limited 

by a maximum value 
maxv [64], [65]. 

How to apply the proposed approach to solving 

OLSDG is shown in the following steps: 

Step 1: Input the microgrid data (line and bus), and bus 

voltage limits. 

Step 2: Using the load flow equation, calculate the total 

PL; 

Step 3: Randomly generates an initial population 

(array) of particles with random positions and velocities 

on dimensions in the solution space and set the iteration 

counter i = 0. 

Step 4: If the bus voltage is within the limits, for each 

particle, calculate the total loss using equation (1). 

Otherwise, that particle is infeasible. 

Step 5: For each particle, compare its objective value 

with the individual best. If the objective value is lower 

than Pbest, set this value as the current Pbest, and record the 

corresponding particle position. 

Step 6: Choose the particle associated with the 

minimum individual best Pbest of all particles, and set the 

value of this Pbest as the current overall best Gbest. 

Step 7: Using (6) and (7), respectively, to update the 

velocity and position of particle.  

Step 8: If the iteration number reaches the maximum 

limit, go to Step 9. Otherwise, set iteration index i = i + 

1, and go back to Step 4. 

Step 9: Print out the optimal solution to the target 

problem. The best position includes the optimal locations 

and size of DG, and the corresponding fitness value 

representing the minimum PL. 

 

4.2.  BAT algorithm 

BAT algorithm is a bio-inspired algorithm proposed it 

in 2010 by Xin-She Yang [60], [66], [67].  This method 

takes advantage of the bats' echolocation behavior. The 

microbat is the most frequent user of echolocation among 

all bat species. A bat will use sonar to locate prey, identify 

objects, and steer clear of obstacles. When these sonar 

signals strike an item, they bounce back and produce 

echoes. Bats use the time difference between an echo 

signal's emission and its detected position to estimate an 

object's size [60], [66]. Additionally, bats adjust the 

intensity and pulse rate of their signal based on how close 

their prey is. When utilizing the bat algorithm, the 

following idealized guidelines should be followed: 

✓ To locate obstacles and distinguish between them 

and potential food, all BATs use the echolocation.  

✓ Bats have a random velocity 𝑣𝑖 at position 𝑥𝑖 

initially, with frequency fixes at 𝑓𝑖𝑚𝑖𝑛, loudness (𝐴0) 

variable, and wavelength λ fluctuating. Depending 

on how close the prey is, they automatically modify 

their loudness and pulse rate.  

✓ 𝐴0 it goes from a high value to a fixed minimum 

value 𝐴𝑚𝑖𝑛. The steps below illustrate the Bat 

algorithm [60], [67], [68]. 
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Step 1. Population 

In the search space, the bat population is initialized at 

random. A good population range is from 10 to 40. The 

objective function is used to determine fitness, and 

changes in loudness, heart rate, and velocity are used to 

update these values. The population in this simulation is 

assumed to be 20. 

Step 2. Movement of bats 

The parameters of bats are updated to reflect the 

current state of the search spaces 

𝑓1 = 𝑓𝑚𝑖𝑛 + (𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛)𝑟𝑎𝑛𝑑                                              (14) 

𝑣𝑖
𝑡 = 𝑣𝑖

𝑡−1 + (𝑥𝑡 − 𝑥∗)𝑓𝑖                                                          (15) 

𝑥𝑖
𝑡 = 𝑥𝑖

𝑡−1 + 𝑣𝑖
𝑡                                                                         (16) 

Where 𝑥𝑖
𝑡 and 𝑣𝑖

𝑡 are current position and velocity of 

ith bat. 𝑥∗ is the current gbest position.  

Step 3. Local search by random walk 

In the local search phase, one of the best solutions is 

chosen at random, and a random walk is then used to 

create a new solution locally centered around that solution 

using (10) [60]. 

𝑥𝑛𝑒𝑤 = 𝑥𝑜𝑙𝑑 + 𝜀𝐴𝑡                                                                      (17) 

𝜀 denotes a random number between [-1, 1] and 𝐴𝑡is 

the mean of loudness of all bats at present iteration. 

Step 4. The pulse emission and loudness 

Typically, when a Bat finds its prey or is close to it, its 

loudness (𝐴𝑖) decreases and its pulse emission rate (𝑟𝑖) 

increases. Every iteration updates 𝐴𝑖 and 𝑟𝑖 using (18) and 

(19). The values of α and γ in this simulation are assumed 

to be α = γ = 0.9 [60], [68]. 

𝐴𝑖
𝑡+1 = 𝛼𝐴𝑖

𝑡                                                                               (18) 

𝑟𝑖
𝑡+1 = 𝑟𝑖

0[1 − 𝑒𝑥𝑝(−𝛾𝑡)]                                                       (19) 

Step 5.Optimal solution 

Sort the answer based on the fitness values of each 

person; the best fitness value is updated as gbest. The 

steps involved using Bat algorithm to determine the DG 

size and placement are described below [66], [67], [68]. 

1. Lire the networks line and bus data’s. 

2. Select the DG number to be placed. 

3. Establish the DG's voltage and powers limits. 

4. Use equation (17) LSI for the base case and run 

power flow to determine the total active loss; 

5. Set the frequency (f), velocity, loudness (A), 

pulse rate (r), and total number of iterations. 

6. Choose the best current solution from the 

minimum or objective functions. 

7. For each iteration, the DGs position and size are 

chosen at random. Eq. (14), (15), and (16) are 

used to update position, frequency, and velocity. 

8. Use (18) and (19) to update the loudness and rate 

of pulse emission.  

9. Until the maximum repetition is achieved, repeat 

steps 6 through 9 one again. 

10. Among all the solutions, choose the best 

(minimum) goal function. The DGs' size and 

matching position are then regarded as optimal. 

11. The basic case is compared with the optimal 

objective function. The minimum LSI and loss 

reduction are computed. 

 

5. Simulation & results 

Figure 1 illustrates the single-line diagram of the IEEE 

33-bus distribution system. Bus Location Coefficients 

(BLCs) were selected as the criterion for identifying 

initial network sites for distributed generation (DG). 

These BLCs were computed at five distinct load levels—

20%, 40%, 60%, 80%, and 100% of the rated power—

based on the load profile depicted in Figure 2. The results, 

shown in Figure 3, indicate that lower load levels yield 

slightly higher BLC values. Notably, buses 23 and 24 

exhibit the highest BLC values across all load levels, 

whereas bus 10 consistently shows the lowest value.  

 

 

Figure 1. IEEE-33 bus test system [1]. 
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Figure 2. Daily load diagram. 

 

Figure 3. BLC test system for 5 load levels. 

 

The proposed algorithms implemented and the 

computations were performed using MATLAB software, 

R2021a and all cases were run on a desktop computer 

Windows-10, 64-bit, Intel(R) Core(TM) i5-6500 CPU, 

3.20 GHz processing frequency and 8.0 GB RAM.  

Notably, the ranking of buses based on BLC values 

remains independent of the load level at which they are 

calculated. As demonstrated in Figure 3, buses located at 

the network periphery exhibit significantly higher BLC 

values compared to those in central positions.  

 

5.1. Optimal placement & sizing of DGs by PSO 

In this study, four cases are considered. 

Case 1: One DGs are to be placed and sized optimally 

in the distribution network. 

Case 2: Two DGs are to be placed and sized optimally 

in the distribution network. 

Case 3: Three DGs are to be sited and sized optimally 

in the test systems. 

Case 4: Four DGs are to be placed and sized optimally 

in the test systems. 

In all cases, PSO parameters have been taken as 

follows: Population size = 50, 200max =i 4.0min =w  and  

9.0max =w . The voltage limits are taken as 0.95 and 1.05. 

Simulation results for all cases are illustrated in 

Figures 4 through 7. The objective function (Loss) serves 

as the optimal criterion for determining distributed 

generation (DG) placement. Table 1 summarizes the 

optimal DG locations, corresponding DG sizes, and total 

active and reactive power losses across the four cases. 

 
Figure 4. Power losses for 2 DG. 

 
Figure 5. Power losses for 2 DG. 

 

Figure 6. Power losses for 3 DG. 
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Figure 7. Power losses for 4 DG.                                     

We note that  the PL reduces from 202.67 kW to 114.89 

(kW), 86.647 (kw), 72.414 (kw) and 66.398 (kw), 

respectively which are about 47.39 %, 47.39 %, 47.39 %, 

and 47.39 %, of without DG. While the reactive power 

decreased from 135.14 (kV) to 73.89 (kV), 58.676 (kV), 

49.809 (kV) and 45.387 (kV) which represents 43.70%, 

47.39% 47.39%, and 47.39% without DG.  The 

magnitudes voltages for all cases are shown in Figure 8. 

 
Figure 8. Magnitude voltages for all cases using PSO. 

As shown in the Table 1, we notice that as the number 

of distributed generators increased, the losses were less. It 

is noticeable from the results that the size of the 

distributed generators obtained is higher when using a 

larger number of generators compared to the size obtained 

from a single generator. This is due to the fact that the 

losses in the reactive power were also reduced and thus 

the reactive power available from the main station was 

reduced.   

 

5.2.  Optimal placement & sizing of DGs using BAT 

Table 2 lists the BAT parameters that were used to 

solve the OLSDG problem. As seen in section 2.5, DGs 

are divided into 4 categories according to their potential 

to generate both reactive and active power. In this 

simulation, the following parameter ranges are taken into 

consideration: pulse rate (r) [0, 1], frequency (f) [0, 2], and 

loudness (A) [2, 0]. Depending on the DG type, two 

instances are examined in this work.  

Case 1: Only active power is delivered by DG.  

Case 2: DG is capable of producing or absorbing 

reactive power in addition to providing active power. Two 

scenarios are constructed based on various combinations 

of the objective functions.  

Scenario 2 involves a multi-objective optimization to 

minimize active power losses (PL) and associated costs. 

Figures 9 through 12 compare the ideal voltage profiles 

across two cases for each scenario: systems without 

distributed generation (DG) and those with one, two, 

three, or four DG units installed. The results demonstrate 

that DGs supplying both active and reactive power 

significantly improve voltage profiles compared to units 

delivering only active power. The global optimal solution, 

derived from successive executions of the BAT algorithm, 

is presented in Table 3. 

Table 1. Location and optimal size of DGs obtained by PSO. 

Cases DG N° 
Optimal placement Optimal size of DG 

(MW) 
Efficiency % 

Active loss 

(KW) 

Reactive loss 

(kVAr) DGs bus 

With 1 DGs DG1 12 1.000 43.70 114.89 73.890 

With 2 DGs 
DG1 30 1.000 

43.70 86.647 58.676 
DG2 13 0.893 

With 3 DGs 

DG1 30 1.000 

43.70 72.414 49.809 DG2 25 0.837 

DG3 14 0.791 

With 4 DGs 

DG1 7 0.869 

43.709 66.398 45.387 
DG2 14 0.582 

DG3 31 0.710 

DG4 25 0.719 
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Table 3. Location and optimal size of DGs obtained by BAT. 

Cases 
DG 

N° 

optimal 

placement optimal DG 

Size (MW) 

optimal DG 

Size (kVAr) 

Efficiency 

% 

Time 

(s) 

Active loss 

(KW) 

Reactive 

loss (kVAr) 
DGi bus 

without DG - - - - - 0.114 202.67 135.14 

With 1 DG DG1 33 1.492 - 0.933 46.87 97.728 66.166 

With 2 DGs 
DG1 7 0.378 0.496 0.817 

49.96 88.005 60.3086 
DG2 15 0.484 0.597 0.467 

With 3 DGs 

DG1 33 0.336 0.448 0.770 

46.68 67.75 45.620 DG2 8 0.374 0.498 0.514 

DG3 31 0.219 0.260 0.754 

With 4 DGs 

DG1 17 0.432 0.65 0.220 

46.68 57.61 38.50 
DG2 5 0.116 0.195 0.260 

DG3 29 0.478 0.436 0.581 

DG4 12 0.193 0.270 0.360 

Scenario 1 employs a single-objective optimization 

focused on minimizing active PL. In contrast, Scenario 2 

incorporates a multi-objective framework that balances 

PL reduction with DG installation costs.  

Table 2. BAT parameters. 

Parameters Iterations  Particles  Loudness Frequency 

Values 250 25 0.9 0.9 

We observe that without DG, the active and reactive 

PL are 202.67 kW and 135.14 kVAr, respectively. The 

active and reactive PL with 1 DG are 97.728 kW and 

66.166 kVAr, respectively. The active and reactive PL 

with 2 DG are 88.005 kW 60.3086 kVAr, respectively. 

The active and reactive PL with 3 DG are 67.758 kW and 

45.62 kVAr, respectively. The active and reactive PL with 

4 DG are 57.61 kW and 38.50 kVAr, respectively. 

The results demonstrate that increasing the number of 

DG units enhances PL reduction. When active losses are 

prioritized, the percentage reductions compared to a DG-

free system are 51.78%, 56.58%, 66.57%, and 71.57% for 

one to four DG units, respectively. However, this 

improvement comes at the expense of higher investment 

costs, underscoring the need for further research to 

optimize DG deployment for maximum cost-

effectiveness. Table 4 show the comparison of obtained 

and literature results.     

 
Figure 9. Optimal bus voltages when connecting 1 DGs by 

BAT algorithm. 

 
Figure 10. Optimal bus voltages when connecting 2 DGs by 

BAT algorithm. 
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Figure 11. Optimal bus voltages when connecting 3 DGs by 

BAT algorithm. 

 

Figure 12. Optimal bus voltages when connecting 4 DGs by 

BAT algorithm. 

The numerical and graphical results clearly indicate 

that, prior to DG installation; the base case exhibited 

significantly poor LSI values and voltage profiles. Both 

metrics improved markedly after DG implementation, 

with voltage profiles and LSI trends aligning closely 

across scenarios. In summary, the optimal DG allocation 

and sizing achieved through PSO and BAT algorithms 

resulted in substantial reductions in active PL, near-ideal 

voltage profiles, and enhanced LSI values. Simulation 

outcomes consistently demonstrate that PSO and BAT 

algorithms produce higher-quality solutions compared to 

conventional methods. Furthermore, the findings confirm 

that DGs supplying both active and reactive power exhibit 

superior capability in minimizing system losses. 

 

 

Table 4. Comparison of obtained and literature results. 
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6. Conclusion 

This study presents a comprehensive methodology for 

optimizing the sizing and placement of distributed 

generation (DG) units using Particle Swarm Optimization 

(PSO) and BAT algorithms. By minimizing active power 

losses (PL), these methods enhance energy efficiency, 

reduce electricity costs, and lower the environmental 

impact of power generation. Optimal DG integration also 

promotes renewable energy adoption, aligning with 

global sustainability objectives. Improved system 

performance further decreases operational expenses and 

incentivizes investment in distributed power 

infrastructure. Notably, the approach demonstrates robust 

performance even with high numbers of DG units and bus 

location coefficients (BLCs). 

The efficacy of the proposed  approaches was validated 

using the IEEE 33-bus test system, a widely recognized 

benchmark for distribution networks. Results indicate 

significant success in addressing optimal DG placement 

challenges, achieving PL reductions ranging from 51.78% 

to 71.5%—a marked improvement over conventional 

techniques. These outcomes provide a critical foundation 

for advancing cost optimization and renewable integration 

in power systems, bridging the gap between theoretical 

research and practical implementation to benefit both 

academia and society. 

However, the study is limited by its reliance on the 

IEEE 33-bus system, which simplifies real-world network 

complexities. Fixed parameters were assumed, neglecting 

dynamic factors such as demand variability, renewable 

energy intermittency, and equipment reliability—key 

considerations for practical deployment. 

Future work will extend these methods to larger, 

diverse networks and real-world smart grids, 

incorporating energy storage, demand response strategies, 

and advanced communication protocols. Collaboration 

with industry stakeholders will ensure economic viability 

and adaptability to uncertainties like load fluctuations, 

renewable intermittency, and grid failures. This expansion 

aims to enhance the robustness and applicability of the 

approches for complex, real-world energy systems. 
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