
Science, Engineering and Technology  Vol. 5, No. 2, Online First 

www.setjournal.com  https://doi.org/10.54327/set2025/v5.i2.210 

 
Corresponding author: Brighton Mahohoho (brightonmahohoho.07@gmail.com)  

Received: 19 September 2024; Revised: 2 December 2025; Accepted: 4 March 2025; Published: 5 May 2025 

© 2025 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License 

 

Online First 

The Advanced Actuarial Data Science Based AI-Driven Solutions for 

Automated Loss Reserving Under IFRS 17 in Non-Life Insurance  

Brighton Mahohoho1, Charles Chimedza2, Florance Matarise1, Sheunesu Munyira1 

1University of Zimbabwe, Department of Mathematics & Computational Sciences, Harare, Zimbabwe. 
2University of Witwatersrand, School of Statistics & Actuarial Science, Johannesburg, South Africa. 

 

Abstract 

This study introduces an AI-driven Automated Actuarial Loss Reserving Model (AALRM) designed to meet IFRS 

17 standards for non-life insurance. The model leverages advanced machine learning techniques to improve accuracy, 

efficiency, and adaptability in loss reserves, with a specific focus on inflation-adjusted frequency-severity modeling. A 

unique aspect of this research is the integration of bancassurance services, enabling automated management for both 

microfinance and car insurance on a unified platform. This includes a no-claims bonus system that categorizes 

policyholders into four tiers—base, variable, final, and high-bonus—resulting in more precise risk assessments and 

enhanced customer retention. Among eight evaluated machine learning algorithms, the Random Forest (RANGER) 

outperformed others for estimating Aggregate Comprehensive Automated Actuarial Loss Reserves (ACAALR). The 

model’s effectiveness was validated through stress tests, scenario analyses, and comparisons with traditional methods 

like the Chain Ladder. Additionally, the study introduces a novel Robust Automated Actuarial Loss Reserve Margin 

(RAALRM) with adaptive bounds, addressing traditional limitations in reserve margin calculations. This AI-integrated 

approach significantly improves predictive accuracy, operational efficiency, and strategic decision-making, offering a 

scalable solution for the insurance industry. 
 

Keywords: Actuarial Data Science, Artificial Intelligence, Data Analytics, Automated Actuarial Loss Reserves, 

Actuaries, Machine Learning. 

 

 

1. Introduction 

In the ever-evolving landscape of non-life insurance, 

the precision and efficiency of loss reserving are critical 

for maintaining financial stability and ensuring regulatory 

compliance. Traditional actuarial methods, while well-

established, face significant challenges in managing the 

increasing complexity and volume of data. The advent of 

artificial intelligence (AI) and data science offers 

innovative solutions to these challenges, promising more 

accurate and automated loss reserving processes. This 

paper explores how actuarial data science-based AI 

solutions can revolutionize automated loss reserving in 

non-life insurance, highlighting their potential to enhance 

precision, reduce operational costs, and improve decision-

making. 

Loss reserving in non-life insurance involves 

estimating the amount of money an insurer needs to set 

aside to pay future claims. Traditionally, this process 

relies on actuarial methods such as chain-ladder models, 

frequency-severity models, and other statistical 

techniques [1]. However, these traditional methods can be 

limited by their reliance on historical data and 

assumptions that may not capture the complexities of 

emerging risks and changing patterns. 

Actuarial data science introduces a new paradigm by 

leveraging advanced machine learning algorithms, big 
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data analytics, and artificial intelligence to enhance the 

accuracy and efficiency of loss reserving. Machine 

learning models, such as neural networks and gradient 

boosting machines, can process vast amounts of data, 

identify intricate patterns, and make predictions with 

higher accuracy than conventional methods [2]. By 

incorporating AI, insurers can automate the reserving 

process, reduce human error, and adapt more swiftly to 

changing market conditions. 

The rationale behind integrating AI solutions into 

actuarial loss reserving stems from several key factors. 

First, the volume and complexity of data in non-life 

insurance have grown exponentially, driven by 

digitalization and the increasing availability of granular 

data [3]. Traditional methods, often constrained by 

manual processes and limited data handling capacity, may 

struggle to keep pace with these changes. 

Second, the financial implications of inaccurate loss 

reserving are substantial. Under-reserving can lead to 

significant financial shortfalls, while over-reserving ties 

up capital that could be used more productively. AI-based 

solutions offer the potential to improve accuracy by 

continuously learning from new data and adjusting 

predictions accordingly, thus mitigating these risks. 

In the realm of non-life insurance, the accurate 

estimation of loss reserves is critical for ensuring financial 

stability and regulatory compliance. Traditional actuarial 

reserving methods, such as the Chain Ladder method, 

Bornhuetter-Ferguson, and Cape Cod, have been the 

cornerstone of the industry for decades. However, these 

approaches face significant limitations in today’s complex 

and rapidly changing risk landscape, characterized by 

increased volatility, inflation, and diverse coverage needs 

[4]. The deterministic nature of traditional models often 

struggles to capture the intricate dynamics of emerging 

risks, particularly when it comes to non-linear interactions 

between multiple variables [5]. 

One of the primary challenges is the reliance on 

aggregated data and simplistic assumptions about claim 

development, which can lead to underestimation or 

overestimation of reserves. Traditional methods often 

assume that past data trends will persist, limiting their 

responsiveness to evolving patterns, such as inflationary 

pressures or changes in policyholder behavior. This lack 

of flexibility in incorporating new information can result 

in inaccurate reserve estimates, potentially leading to 

insufficient capital adequacy or over-conservative 

provisioning. 

Furthermore, the manual and static nature of 

conventional reserving techniques poses operational 

inefficiencies and limits the ability to quickly adapt to 

unexpected market changes or regulatory shifts. This is 

especially problematic under the requirements of IFRS 

17, which mandates a higher level of transparency, 

accuracy, and forward-looking projections for reserves. 

The limitations of traditional methods are particularly 

evident in the areas of inflation adjustment, frequency-

severity analysis, and the estimation of reserve 

uncertainty. 

To address these challenges, this paper introduces an 

AI-driven Automated Actuarial Loss Reserving Model 

(AALRM) that leverages advanced machine learning 

techniques to enhance predictive accuracy, operational 

efficiency, and adaptability. By integrating inflation-

adjusted frequency-severity modeling, the proposed 

approach offers a dynamic and data-rich framework 

capable of learning from historical data and incorporating 

real-time information to improve reserve estimates. This 

AI-based solution not only surpasses the limitations of 

traditional methods but also aligns with the evolving 

regulatory landscape under IFRS 17, ensuring that 

reserves are both adequate and adaptable to future 

uncertainties. 

 

1.1. Traditional actuarial loss reserving methods 

In actuarial science, loss reserving methods are crucial 

for estimating the reserves that an insurance company 

needs to set aside to pay for future claims. These methods 

are designed to predict the ultimate cost of claims based 

on historical data and various statistical techniques. This 

section describes some of the prominent loss reserving 

methods, including their theoretical underpinnings, 

algorithms, and practical implementations. 

 

1.1.1. Chain-Ladder Method 

The Chain-Ladder method is one of the most widely 

used techniques in actuarial science for loss reserving. It 

relies on the assumption that the development of claims 

over time follows a predictable pattern. The Chain-Ladder 

method assumes that the ratio of development factors (i.e., 
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the ratios of cumulative claims between successive 

periods) is constant across different accident years. The 

chain ladder model is a popular method used in actuarial 

science for predicting future claims based on past data. 

The model assumes that the development of claims over 

time follows a certain pattern that can be extrapolated to 

estimate future claims. The basic structure of the chain 

ladder is presented by Table 1. 

Table 1. Structure of the Basic Chain Ladder Model. 

Accident 

Year 

Development 

Lag 1 

Development 

Lag 2 
⋯ 

Development 

Lag n 

Year 1 𝐶1,1 𝐶1,2 ⋯ 𝐶1,𝑛 

Year 2 𝐶2,1 𝐶2,2 ⋯ 𝐶2,𝑛−1 

⋮ ⋮ ⋮ ⋱ ⋮ 

Year m 𝐶𝑚,1 𝐶𝑚,2 ⋯ 𝐶𝑚,𝑛−𝑚+1 

Let 𝐶𝑖,𝑗 represent the cumulative claims reported in 

Accident Year 𝑖 at Development Lag 𝑗. The chain ladder 

model assumes that the development of claims follows a 

pattern that can be described by the development factors. 

The development factors are calculated as: 

𝑓𝑗 =
∑ 𝐶𝑖,𝑗+1

𝑚−𝑗
𝑖=1

∑ 𝐶𝑖,𝑗
𝑚−𝑗
𝑖=1

,  for 𝑗 = 1,2, … , 𝑛 − 1. (1) 

where 𝑓𝑗 is the development factor for lag 𝑗. 

To project future claims, we use the development 

factors. For a given accident year 𝑖 and development lag 

𝑗, the projected claim 𝐶̂𝑖,𝑗 can be calculated as: 

𝐶̂𝑖,𝑗 = 𝐶𝑖,𝑗−1 ⋅ 𝑓𝑗−1,  for 𝑗 > 1. (2) 

where 𝐶̂𝑖,𝑗 is the projected cumulative claim for 

Accident Year 𝑖 at Development Lag 𝑗. 

The total claims for Accident Year 𝑖, denoted 𝑇̂𝑖, is the 

sum of the projected claims across all development lags: 

𝑇̂𝑖 = ∑ 𝐶̂𝑖,𝑗

𝑛

𝑗=1

. (3) 

where 𝑇̂𝑖 is the total projected claims for Accident Year 

𝑖. 

The development factor 𝑓𝑗 can be used to project future 

claims for any development lag 𝑗, given the claims from 

the previous lag. 

Algorithm 1 Chain-Ladder Method 

Input: Cumulative claims data matrix 𝑪  

Output: Reserves for each accident year Compute 

development factors 𝒇𝒋 from 𝑪  

for each accident year 𝒊 do 

Estimate reserve 𝑹𝒊 using 𝑹𝒊 = 𝑪𝒊,𝟎 ⋅ ∏ 𝒇𝒋
𝒎
𝒋=𝟏 − 𝑪𝒊,𝒎 

end for=0 

Proof. To prove this, consider the claims for Accident 

Year 𝑖 at Development Lag 𝑗, denoted 𝐶𝑖,𝑗. For the next 

development lag 𝑗 + 1, the claims are given by: 

𝐶̂𝑖,𝑗+1 = 𝐶𝑖,𝑗 ⋅ 𝑓𝑗. (4) 

Given that the development factor 𝑓𝑗 is calculated as 

the ratio of the total claims in lag 𝑗 + 1 to lag 𝑗 across all 

accident years, it can be shown that: 

𝑓𝑗 =
∑ 𝐶𝑖,𝑗+1

𝑚−𝑗
𝑖=1

∑ 𝐶𝑖,𝑗
𝑚−𝑗
𝑖=1

. (5) 

This ensures that: 

𝐶̂𝑖,𝑗+1 = 𝐶𝑖,𝑗 ⋅
∑ 𝐶𝑖,𝑗+1

𝑚−𝑗
𝑖=1

∑ 𝐶𝑖,𝑗
𝑚−𝑗
𝑖=1

. (6) 

Therefore, 𝐶̂𝑖,𝑗+1 is a valid projection for future 

claims.  

The total projected claims 𝑇̂𝑖 for Accident Year 𝑖 is the 

sum of the projected claims across all development lags 

as presented by Equation (3). 

The total claims for Accident Year 𝑖 can be expressed as: 

𝑇̂𝑖 = ∑ 𝐶𝑖,𝑗

𝑛

𝑗=1

⋅ ∏ 𝑓𝑘

𝑗−1

𝑘=1

. (7) 

Proof. To derive this result, we use the fact that the 

projected claims 𝐶̂𝑖,𝑗 for lag 𝑗 are given by: 

𝐶̂𝑖,𝑗 = 𝐶𝑖,1 ⋅ ∏ 𝑓𝑘

𝑗−1

𝑘=1

. (8) 

Thus, the total projected claims for Accident Year 𝑖 is: 

𝑇̂𝑖 = ∑ 𝐶𝑖,1

𝑛

𝑗=1

⋅ ∏ 𝑓𝑘

𝑗−1

𝑘=1

. (9) 

Simplifying the summation using the properties of the 

development factors leads to: 
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𝑇̂𝑖 = 𝐶𝑖,1 ⋅ (1 + ∑ ∏ 𝑓𝑘

𝑗

𝑘=1

𝑛−1

𝑗=1

). (10) 

Hence, the total claims can be expressed in terms of 

𝐶𝑖,1 and the development factors 𝑓𝑘 as shown in Equation  

(8). 

 
1.1.2. Bornhuetter-Ferguson Method 

The Bornhuetter-Ferguson (BF) Method combines the 

Chain-Ladder method with prior assumptions about the 

ultimate claims. 

Let 𝐶̂𝑖 be the estimated ultimate claims for the 𝑖-th 

accident year. The BF method incorporates an a priori 

estimate of ultimate claims 𝜇𝑖 and adjusts it with the 

observed development. The reserve 𝑅𝑖 is estimated as: 

𝑅𝑖 = 𝜇𝑖 − 𝐶𝑖,𝑛 (11) 

where 𝜇𝑖 is usually obtained from external benchmarks 

or prior models. 

Algorithm 2 Bornhuetter-Ferguson Reserving Method 

Input: Cumulative claims 𝑪𝒊𝒋 where 𝒊 indexes the 

accident year and 𝒋 indexes the development year; Prior 

estimates 𝝁𝒊 representing the expected ultimate claims for 

each accident year.  

Step 1: Determine the development factor 𝒇𝒊𝒋 for each 

development year 𝒋 based on historical data. These factors 

are used to project future claims.  

Step 2: Calculate the ultimate claims 𝑪̂𝒊 for each accident 

year 𝒊 using the following equation: 

𝐶̂𝑖 = ∑ 𝐶𝑖𝑗

𝑗

⋅ 𝑓𝑖,𝑗 (12) 

where 𝒇𝒊,𝒋 is the development factor for the 𝒋-th 

development year applied to the 𝒊-th accident year. 

Step 3: Apply the Bornhuetter-Ferguson reserve estimate 

for each accident year 𝒊 using: 

𝑅𝑖 =
𝜇𝑖 − ∑ 𝐶𝑖𝑗𝑗

𝜋𝑖

 (13) 

where: 

• 𝝁𝒊 is the prior estimate of the ultimate claims for 

accident year 𝒊, 

• ∑ 𝑪𝒊𝒋𝒋  is the cumulative claims reported to date 

for accident year 𝒊, 

• 𝝅𝒊 is the proportion of claims reported to date 

(based on development factors or other 

methods). 

Output: Estimated reserves 𝑹𝒊 for each accident year 𝒊. 

 

1.1.3. Mack Model 

The Mack Model is a widely used statistical method 

for estimating reserves in insurance claim reserving. It is 

based on the development of claims over time and 

provides both point estimates and measures of 

uncertainty. The model assumes a specific structure for 

the development of claims and leverages this structure to 

make predictions about future claims. 

Let 𝐶𝑖𝑗 represent the cumulative claims reported by 

development year 𝑗 for accident year 𝑖. The Mack Model 

assumes that these cumulative claims evolve according to 

development factors 𝑓𝑗, which are estimated from 

historical data. 

For each accident year 𝑖, the cumulative claims 𝐶𝑖𝑗 are 

related to the claims of previous years by a development 

factor 𝑓𝑗. The relationship can be expressed as: 

𝐶𝑖,𝑗+1 = 𝐶𝑖𝑗 ⋅ 𝑓𝑗 (14) 

where 𝑓𝑗 is the development factor for the 𝑗-th 

development year. 

The ultimate claims 𝐶̂𝑖 for accident year 𝑖 are estimated 

by projecting the cumulative claims to their final value 

using the development factors: 

𝐶̂𝑖 = 𝐶𝑖1 ⋅ 𝑓1 ⋅ 𝑓2 ⋯ 𝑓𝑚−1 (15) 

where 𝑚 is the total number of development years 

available. 

The reserve 𝑅𝑖 for accident year 𝑖 is calculated as the 

difference between the ultimate claims and the cumulative 

claims reported to date: 

𝑅𝑖 = 𝐶̂𝑖 − ∑ 𝐶𝑖𝑗

𝑗

 (16) 

The variance of the reserves Var(𝑅𝑖) can be computed 

by accounting for the variance in the cumulative claims: 

Var(𝑅𝑖) = ∑ (
∂𝑅𝑖

∂𝐶𝑖𝑗
)

2

𝑗

Var(𝐶𝑖𝑗) (17) 
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where Var(𝐶𝑖𝑗) is the variance of the cumulative 

claims 𝐶𝑖𝑗, and 
∂𝑅𝑖

∂𝐶𝑖𝑗
 denotes the sensitivity of the reserve 

𝑅𝑖 with respect to 𝐶𝑖𝑗. 

The development factors 𝑓𝑗 are estimated by solving 

the following least-squares problem: 

min
𝑓𝑗

∑ (𝐶𝑖,𝑗+1 − 𝐶𝑖𝑗 ⋅ 𝑓𝑗)
2

𝑖,𝑗

 (18) 

Proposition 1: Under the assumptions of the Mack 

Model, the reserve estimator 𝑅𝑖 is an unbiased estimator 

of the ultimate claim amount minus the reported claims. 

Proof: 

To establish the unbiasedness of the reserve estimator 

𝑅𝑖, we leverage the linearity of expectation and the 

properties of unbiased estimators. 

Let 𝐶̂𝑖 denote the estimator of the ultimate claim 

amount for the 𝑖th cohort. According to the Mack Model, 

the reserve 𝑅𝑖 is defined as: 

𝑅𝑖 = 𝐶̂𝑖 − ∑ 𝐶𝑖𝑗

𝑗

 (19) 

where ∑ 𝐶𝑖𝑗𝑗  represents the total reported claims up to 

development period 𝑗. Our goal is to demonstrate that 𝑅𝑖 

is an unbiased estimator of the ultimate claim amount 

minus the reported claims. 

Linearity of Expectation: By the linearity of 

expectation, we have: 

𝔼[𝑅𝑖] = 𝔼 [𝐶̂𝑖 − ∑ 𝐶𝑖𝑗

𝑗

] (20) 

This can be decomposed as: 

𝔼[𝑅𝑖] = 𝔼[𝐶̂𝑖] − 𝔼 [∑ 𝐶𝑖𝑗

𝑗

] (21) 

Unbiased Estimation of Ultimate Claims: Under the 

Mack Model assumptions, the estimator 𝐶̂𝑖 is an unbiased 

estimator of the ultimate claim amount 𝐶𝑖
𝑈 for the 𝑖th 

cohort. Therefore: 

𝔼[𝐶̂𝑖] = 𝐶𝑖
𝑈

 (22) 

Expected Value of Reported Claims: The expected 

value of the total reported claims up to development 

period 𝑗 is given by: 

𝔼 [∑ 𝐶𝑖𝑗

𝑗

] = ∑ 𝔼

𝑗

[𝐶𝑖𝑗] (23) 

Given that 𝐶𝑖𝑗 represents the claims reported by the 𝑗th 

development period, and 𝔼[𝐶𝑖𝑗] is precisely the 

cumulative claims reported up to period 𝑗, the expectation 

aligns with the reported claims up to that period. 

Combining Results: Substituting these results into 

our earlier expression: 

𝔼[𝑅𝑖] = 𝔼[𝐶̂𝑖] − ∑ 𝔼

𝑗

[𝐶𝑖𝑗] (24) 

Since 𝔼[𝐶̂𝑖] = 𝐶𝑖
𝑈 and 𝔼[∑ 𝐶𝑖𝑗𝑗 ] = ∑ 𝐶𝑖𝑗𝑗 , we obtain: 

𝔼[𝑅𝑖] = 𝐶𝑖
𝑈 − ∑ 𝐶𝑖𝑗

𝑗

 (25) 

Conclusion: 𝑅𝑖 is an unbiased estimator of the 

ultimate claim amount minus the reported claims, 

completing the proof. 

Lemma 1: The variance of the reserve estimator 𝑅𝑖 is 

derived from the variances of the reported claims and the 

development factors. 

Proof: By applying the propagation of variance 

formula, we obtain: 

Var(𝑅𝑖) = ∑ (
∂𝑅𝑖

∂𝐶𝑖𝑗
)

2

𝑗

Var(𝐶𝑖𝑗) (26) 

The Mack Model provides a robust framework for 

estimating reserves and quantifying uncertainty in 

insurance claim reserving. Through the use of 

development factors and variance calculations, it offers a 

systematic approach to predicting future claims and 

managing risk. 

Algorithm 3 Mack Model for Claim Reserving 

Input: Cumulative claims 𝑪𝒊𝒋, where 𝒊 denotes the 

accident year and 𝒋 denotes the development year.  

Step 1: Estimate the development factors 𝒇𝒋 and the 

associated variances Var(𝒇𝒋) for each development year 𝒋 
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using the method of least squares or other suitable statistical 

techniques.  

Step 2: Compute the ultimate claims 𝑪̂𝒊 for each accident 

year 𝒊 using the development factors: 

𝐶̂𝑖 = 𝐶𝑖1 ⋅ 𝑓1 ⋅ 𝑓2 ⋯ 𝑓𝑚−1 
 

(27) 

where 𝒎 is the number of development years available 

for the accident year 𝒊, and 𝒇𝒋 represents the development 

factor for the 𝒋-th development year. 

Step 3: Calculate the reserves 𝑹𝒊 for each accident year 𝒊 

as: 

𝑅𝑖 = 𝐶̂𝑖 − ∑ 𝐶𝑖𝑗

𝑗

 (28) 

where ∑ 𝑪𝒊𝒋𝒋  is the cumulative claims reported to date for 

accident year 𝒊. 

Step 4: Estimate the variance of the reserves Var(𝑹𝒊) for 

each accident year 𝒊 using the following formula: 

Var(𝑅𝑖) = ∑ (
∂𝑅𝑖

∂𝐶𝑖𝑗

)

2

𝑗

Var(𝐶𝑖𝑗) (29) 

where Var(𝑪𝒊𝒋) represents the variance of the cumulative 

claims 𝑪𝒊𝒋 and 
𝛛𝑹𝒊

𝛛𝑪𝒊𝒋
 is the partial derivative of 𝑹𝒊 with respect 

to 𝑪𝒊𝒋. 

Output: Estimated reserves 𝑹𝒊 and their associated 

variances Var(𝑹𝒊) for each accident year 𝒊. 

 

1.1.4. Generalized Linear Models (GLM) 

Loss reserving is a crucial task in actuarial science, 

used to estimate the future claims payments that an insurer 

expects to make. Generalized Linear Models (GLMs) 

provide a flexible framework for modeling these claims, 

offering both statistical and practical advantages. 

A Generalized Linear Model (GLM) extends 

traditional linear models to handle response variables that 

follow distributions other than the normal distribution. 

Formally, a GLM consists of three components: 

1. Random Component: The response variable 𝑌𝑖 

is assumed to follow a probability distribution 

from the exponential family. This includes 

distributions such as normal, binomial, Poisson, 

and gamma. 

2. Systematic Component: The predictors (or 

explanatory variables) are combined linearly to 

form a linear predictor. If 𝐱𝑖 denotes the vector of 

predictors for observation 𝑖, then the linear 

predictor is given by: 

𝜂𝑖 = x𝑖
⊤β, 

  where β is a vector of coefficients to be 

estimated. 

3. Link Function: The link function 𝑔(⋅) connects 

the mean of the response variable 𝜇𝑖 to the linear 

predictor. Specifically, 

𝑔(𝜇𝑖) = 𝜂𝑖 . 

In the context of loss reserving, the response variable 

𝑌𝑖 typically represents the number of incurred losses or 

claims. The systematic component might include factors 

such as development years, policyholder characteristics, 

and exposure measures. 

The GLM for loss reserving is often specified using the 

following steps: 

Consider a GLM where the response variable 𝑌𝑖 

follows a Gamma distribution, which is common for 

modeling loss amounts due to its flexibility in handling 

skewed distributions. The probability density function of 

the Gamma distribution is: 

𝑓(𝑦𝑖; 𝛼, 𝛽) =
𝑦𝑖

𝛼−1𝑒−𝑦𝑖/𝛽

𝛽𝛼𝛤(𝛼)
 

where 𝛼 and 𝛽 are shape and scale parameters, 

respectively. 

The link function for the Gamma distribution is often 

the reciprocal link: 

𝑔(𝜇𝑖) =
1

𝜇𝑖
 

where 𝜇𝑖 is the mean of the response variable. Thus, 

𝜂𝑖 =
1

𝜇𝑖
 

The systematic component is given by: 

𝜂𝑖 = x𝑖
⊤β. 

The parameters β are estimated by maximizing the log-

likelihood function. For the Gamma distribution, the log-

likelihood function is: 
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ℒ(β) = ∑ [𝛼log𝛽 − log𝛤(𝛼) + (𝛼 − 1)log𝑦𝑖 −
𝑦𝑖

𝛽
]

𝑛

𝑖=1

. 

For a GLM with a Gamma distribution, the maximum 

likelihood estimator (MLE) of the parameter vector β is 

consistent and asymptotically normal. 

Proof. The consistency of the MLE follows from the 

fact that the log-likelihood function is concave and the 

Fisher information matrix is positive definite. The 

asymptotic normality can be derived using the standard 

results from the theory of M-estimators. ◻ 

The variance of the parameter estimates β̂ is given by: 

Var(β̂) = [X⊤WX]−1, 

where W is a diagonal matrix with elements 𝑤𝑖 =
∂𝜇𝑖

∂𝜂𝑖
⋅

Var(𝑌𝑖). 

The estimated reserves can be calculated as the 

expected value of the response variable given the 

predictors, i.e., 

𝑅̂𝑖 = 𝜇̂𝑖, 

where 𝜇̂𝑖 is the fitted value from the GLM. 

Assuming the relationship between the claim amount 

𝑌𝑖 and the covariates 𝐱𝑖 is correctly specified within the 

Generalized Linear Model (GLM) framework, the GLM 

provides asymptotically efficient estimates for the reserve 

parameters. 

Proof. Consider a Generalized Linear Model (GLM) 

where the response variable 𝑌𝑖 follows an exponential 

family distribution with probability density function (pdf) 

given by: 

𝑓(𝑦𝑖; 𝜃𝑖 , 𝜙) = exp (
𝑦𝑖𝜃𝑖 − 𝑏(𝜃𝑖)

𝜙
+ 𝑐(𝑦𝑖, 𝜙)), 

where 𝜃𝑖 denotes the natural parameter, 𝜙 is the 

dispersion parameter, 𝑏(⋅) is the cumulant function, and 

𝑐(⋅) is a function of the dispersion parameter 𝜙. 

Suppose the relationship between 𝜃𝑖 and the covariates 

𝐱𝑖 is specified through a link function 𝑔(⋅) such that: 

𝑔(𝜇𝑖) = 𝜃𝑖, 

where 𝜇𝑖 = 𝔼[𝑌𝑖] represents the mean of the response 

variable. 

The log-likelihood function for the parameter vector β 

in the GLM is: 

ℒ(β; y, X) = ∑ (
𝑦𝑖𝜃𝑖 − 𝑏(𝜃𝑖)

𝜙
+ 𝑐(𝑦𝑖 , 𝜙))

𝑛

𝑖=1

. 

 

Algorithm 4 Generalized Linear Models (GLM) 

Method for Loss Reserving 

Input: Claims data 𝐘 = {𝒀𝒊}𝒊=𝟏
𝒏 , covariates 𝐗 = {𝑿𝒊}𝒊=𝟏

𝒏  

Output: Estimated reserves 𝑹̂  

Fit the Generalized Linear Model (GLM) to the data  

Step 1: Specify the GLM with a link function 𝒈(⋅) and a 

probability distribution from the exponential family. Let 𝝁𝒊 

denote the predicted mean of the 𝒊-th claim, where 

𝑔(𝜇𝑖) = X𝑖β (30) 

Here, 𝐗𝒊 is the vector of covariates for the 𝒊-th claim, and 

𝛃 represents the vector of parameters to be estimated.  

Step 2: Estimate the parameters 𝛃 by maximizing the 

log-likelihood function: 

β̂ = argmax
β

[∑ ℓ

𝑛

𝑖=1

(𝑌𝑖 ∣ X𝑖 , β)] (31) 

where 𝓵(𝒀𝒊 ∣ 𝐗𝒊, 𝛃) denotes the log-likelihood function 

of the 𝒊-th claim given the covariates and model parameters. 

Step 3: For each claim 𝒊, predict the expected mean 𝝁̂𝒊 

using the fitted model parameters 𝛃̂: 

𝜇̂𝑖 = 𝑔−1(X𝑖β̂) (32) 

Here, 𝒈−𝟏(⋅) is the inverse of the link function.  

Step 4: Estimate the reserve 𝑹̂ as the sum of the predicted 

claims: 

𝑅̂ = ∑ 𝜇̂𝑖

𝑛

𝑖=1

 (33) 

 

Under regularity conditions, including the correct 

specification of the link function and the distribution, the 

maximum likelihood estimates β̂ possess the following 

properties: 

1. **Consistency**: As the sample size 𝑛 

approaches infinity, β̂ converges in probability 

to the true parameter value β∗. 

2. **Asymptotic Efficiency**: The covariance 

matrix of β̂ can be approximated by: 
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Var(β̂) ≈ [X𝑇V(β̂)
−1

X]
−1

, 

  where V(β̂) represents the variance-covariance 

matrix of the observations, which depends on X 

and β̂. 

  Additionally, the efficient score function is given 

by: 

𝑈(β) =
∂ℒ(β; y, X)

∂β
. 

  The Fisher Information matrix I(β) is defined as: 

I(β) = −𝔼 [
∂2ℒ(β; y, X)

∂β2
], 

  and the Cramér-Rao lower bound asserts that: 

Var(β̂) ≥ [I(β)]−1. 

Thus, under the correct model specification with an 

appropriate link function and distribution, the GLM 

achieves the Cramér-Rao lower bound, demonstrating its 

asymptotic efficiency. 

Consequently, if the model is correctly specified with 

the appropriate link function and distribution, Generalized 

Linear Models provide efficient and consistent estimates 

of the reserves.  

Generalized Linear Models offer a robust and flexible 

approach to loss reserving. By appropriately specifying 

the random component, systematic component, and link 

function, actuaries can effectively model and estimate 

future claims. The mathematical properties of GLMs 

ensure that the parameter estimates are reliable and that 

the model can be used to make informed predictions about 

future losses. 

 

1.2. Structure and theory of Machine learning 

towards Actuarial Loss Reserving using the 

Inflation Adjusted Frequency Severity 

Approach 

Actuarial loss reserving is crucial in insurance for 

estimating the amount needed to cover future claims. 

Traditional methods often rely on deterministic models 

that may not fully capture the complex patterns in data. 

Machine learning offers a modern approach to enhance 

the accuracy of these estimates. In particular, the 

inflation-adjusted frequency-severity approach is 

employed to account for economic inflation in both the 

frequency and severity of claims. 

 
1.2.1. Mathematical foundation 

The inflation-adjusted frequency-severity approach 

integrates inflation adjustments into the traditional 

frequency-severity model. This approach is structured as 

follows: 

3. Frequency Model: This model estimates the 

number of claims per unit of exposure. 

4. Severity Model: This model estimates the cost 

per claim. 

5. Inflation Adjustment: This adjusts both 

frequency and severity models for economic 

inflation. 

Let 𝑁𝑡 be the number of claims at time 𝑡, and 𝑆𝑡 be the 

severity of each claim. The inflation-adjusted frequency-

severity approach involves the following steps: 

Define the observed frequency 𝐹(𝑡) and severity S(𝑡) as: 

𝐹(𝑡) =
𝑁𝑡

𝐸𝑡
 (34) 

S(𝑡) =
Total Cost

𝑁𝑡
 (35) 

where 𝐸𝑡 is the exposure at time 𝑡, and Total Cost is 

the sum of all claims’ costs.  

To adjust for inflation, we use an inflation factor 𝐼(𝑡), 

which reflects the change in price level over time. The 

inflation-adjusted frequency 𝐹adj(𝑡) and severity Sadj(𝑡) 

are: 

𝐹adj(𝑡) =
𝑁𝑡

𝐸𝑡 ⋅ 𝐼(𝑡)
 

 

(36) 

Sadj(𝑡) =
Total Cost

𝑁𝑡 ⋅ 𝐼(𝑡)
 (37) 

The total reserve 𝑅 required is then: 

𝑅 = ∑ 𝐹adj

𝑇

𝑡=1

(𝑡) ⋅ Sadj(𝑡) ⋅ 𝐸𝑡 (38) 

 

1.2.2. Machine Learning Integration 

Machine learning models, such as regression trees, 

neural networks, or ensemble methods, can be used to 

predict 𝐹(𝑡) and S(𝑡) based on historical data and other 
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covariates. These models account for complex 

relationships and interactions that traditional methods 

might miss. Here, we outline a pseudo algorithm for 

integrating machine learning with the inflation-adjusted 

frequency-severity approach. 

Let 𝑅 denote the inflation-adjusted total reserve. We 

claim that 𝑅 is an unbiased estimator of the future claims 

reserve 𝑅∗, given the assumption of stationary inflation. 

Proposition: Under the assumption of accurate 

inflation adjustments and stationary inflation, the 

estimator 𝑅 satisfies: 

𝔼[𝑅] = 𝑅∗, 

where 𝔼[⋅] denotes the expectation operator. 

Proof: 

Consider the reserve 𝑅 computed as: 

𝑅 = ∑ 𝐹̃

𝑚

𝑖=1

(𝑋𝑖) ⋅ 𝑆̃(𝑋𝑖), 

where 𝐹̃(𝑋𝑖) and 𝑆̃(𝑋𝑖) are the inflation-adjusted 

frequency and severity estimates, respectively. The 

adjustment for inflation is performed by: 

𝐹̃(𝑋𝑖) = 𝐹̂(𝑋𝑖) ⋅
CPI𝑐𝑢𝑟𝑟𝑒𝑛𝑡

CPI𝑏𝑎𝑠𝑒
 

𝑆̃(𝑋𝑖) = 𝑆̂(𝑋𝑖) ⋅
CPI𝑐𝑢𝑟𝑟𝑒𝑛𝑡

CPI𝑏𝑎𝑠𝑒
 

Under the assumption of stationary inflation, the 

Consumer Price Index (CPI) adjustment factor 
CPI𝑐𝑢𝑟𝑟𝑒𝑛𝑡

CPI𝑏𝑎𝑠𝑒
 

is constant across the dataset. Thus, we can factor it out of 

the summation: 

𝑅 =
CPI𝑐𝑢𝑟𝑟𝑒𝑛𝑡

CPI𝑏𝑎𝑠𝑒
∑ 𝐹̂

𝑚

𝑖=1

(𝑋𝑖) ⋅ 𝑆̂(𝑋𝑖) 

Let ℛ be the reserve computed without inflation 

adjustment: 

ℛ = ∑ 𝐹̂

𝑚

𝑖=1

(𝑋𝑖) ⋅ 𝑆̂(𝑋𝑖) 

Since 𝐹̂(𝑋𝑖) and 𝑆̂(𝑋𝑖) are unbiased estimators of the 

true frequencies 𝑓∗(𝑋𝑖) and severities 𝑠∗(𝑋𝑖) 

respectively, we have: 

𝔼[𝐹̂(𝑋𝑖)] = 𝑓∗(𝑋𝑖) 

𝔼[𝑆̂(𝑋𝑖)] = 𝑠∗(𝑋𝑖) 

Thus, the expectation of ℛ is: 

𝔼[ℛ] = ∑ 𝔼

𝑚

𝑖=1

[𝐹̂(𝑋𝑖)] ⋅ 𝔼[𝑆̂(𝑋𝑖)] = ∑ 𝑓∗

𝑚

𝑖=1

(𝑋𝑖) ⋅ 𝑠∗(𝑋𝑖)

= 𝑅∗ 
 

Consequently, the expectation of 𝑅 is: 

𝔼[𝑅] =
CPI𝑐𝑢𝑟𝑟𝑒𝑛𝑡

CPI𝑏𝑎𝑠𝑒
𝔼[ℛ] =

CPI𝑐𝑢𝑟𝑟𝑒𝑛𝑡

CPI𝑏𝑎𝑠𝑒
⋅ 𝑅∗ = 𝑅∗ 

Therefore, 𝑅 is an unbiased estimator of the future 

claims reserve 𝑅∗, as required. 

Lemma: Consider a given time period 𝑡. The inflation-

adjusted frequency 𝔼[𝐹adj(𝑡)] and severity 𝔼[𝑆adj(𝑡)] can 

be expressed as follows: 

𝔼[𝐹adj(𝑡)] =
𝔼[𝑁𝑡]

𝐸𝑡 ⋅ 𝐼(𝑡)
 (39) 

𝔼[𝑆adj(𝑡)] =
𝔼[Total Cost]

𝑁𝑡 ⋅ 𝐼(𝑡)
 (40) 

Proof: 

Let 𝑁𝑡 denote the number of claims in time period 𝑡, 

and Total Cost represent the aggregate cost of all claims 

in time period 𝑡. Let 𝐸𝑡 denote the exposure or relevant 

metric for normalization, and 𝐼(𝑡) denote the inflation 

adjustment factor at time 𝑡. 

1.Inflation-Adjusted Frequency: 

The inflation-adjusted frequency 𝔼[𝐹adj(𝑡)] is given 

by: 

𝔼[𝐹adj(𝑡)] =
Number of Claims

Exposure × Inflation Factor
 

By definition, the number of claims 𝑁𝑡 is the raw 

frequency, and it needs to be adjusted for exposure 𝐸𝑡 and 

inflation 𝐼(𝑡). Therefore: 

𝔼[𝐹adj(𝑡)] =
𝑁𝑡

𝐸𝑡 ⋅ 𝐼(𝑡)
 

This relationship aligns with the expectation of the 

adjusted frequency when accounting for exposure and 

inflation. 

2. Inflation-Adjusted Severity: 

The inflation-adjusted severity 𝔼[𝑆adj(𝑡)] is given by: 
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𝔼[𝑆adj(𝑡)] =
Total Cost

Number of Claims × Inflation Factor
 

The total cost represents the aggregate severity before 

adjustment. To obtain the adjusted severity, we normalize 

by the number of claims 𝑁𝑡 and adjust for inflation 𝐼(𝑡). 

Thus: 

𝔼[𝑆adj(𝑡)] =
𝔼[Total Cost]

𝑁𝑡 ⋅ 𝐼(𝑡)
 

Since both expressions are derived directly from the 

definitions of frequency and severity adjustments, 

accounting for inflation and exposure, they follow directly 

from the properties of expectation and the inflation 

adjustment mechanism. 

Algorithm 5 Inflation-Adjusted Frequency-Severity 

Reserve Estimation 

Procedure ESTIMATE RESERVE (Data, InflationData) 

Initialize a machine learning model 𝓜  

Split Data = {(𝑿𝒊, 𝒀𝒊)}𝒊=𝟏
𝒏  into training set 𝓓𝒕𝒓𝒂𝒊𝒏 and 

testing set 𝓓𝒕𝒆𝒔𝒕  

Train the frequency model 𝒇̂(𝑿) ≈ 𝒇∗(𝑿) on 𝓓𝒕𝒓𝒂𝒊𝒏 

Train the severity model 𝒔̂(𝑿) ≈ 𝒔∗(𝑿) on 𝓓𝒕𝒓𝒂𝒊𝒏  

Predict frequencies 𝑭̂(𝑿) = {𝒇̂(𝑿𝒊)}𝒊=𝟏
𝒎  and severities 

𝑺̂(𝑿) = {𝒔̂(𝑿𝒊)}𝒊=𝟏
𝒎  using 𝓓𝒕𝒆𝒔𝒕  

Adjust predictions for inflation using InflationData: 

𝑭̃(𝑿𝒊) = 𝑭̂(𝑿𝒊) ⋅
CPI𝒄𝒖𝒓𝒓𝒆𝒏𝒕

CPI𝒃𝒂𝒔𝒆

 

𝑺̃(𝑿𝒊) = 𝑺̂(𝑿𝒊) ⋅
CPI𝒄𝒖𝒓𝒓𝒆𝒏𝒕

CPI𝒃𝒂𝒔𝒆

 

Compute the reserve 𝑹 using adjusted frequencies and 

severities: 

𝑹 = ∑ 𝑭̃

𝒎

𝒊=𝟏

(𝑿𝒊) ⋅ 𝑺̃(𝑿𝒊) 

Return Reserve 𝑹 

end procedure=0 

Machine learning models integrated with inflation-

adjusted frequency-severity approaches offer a powerful 

tool for actuarial loss reserving. By leveraging advanced 

algorithms, we can better account for complex patterns in 

claims data and provide more accurate reserve estimates. 

1.3. The Novelty of IFRS17 in Non-Life 

Insurance related to Actuarial Loss 

Reserving 

IFRS 17, officially known as International Financial 

Reporting Standard 17, is a global accounting standard 

developed by the International Accounting Standards 

Board (IASB) to regulate the recognition, measurement, 

presentation, and disclosure of insurance contracts. This 

standard, which replaced IFRS 4, was implemented on 

January 1, 2023, with the aim of providing a more 

consistent and transparent view of the financial position 

and performance of insurance companies. 

IFRS 17 introduces significant changes to the way 

insurers, including non-life insurance companies, 

recognize and report their financial performance, 

specifically in terms of actuarial loss reserving. The 

novelty of IFRS 17 lies in its requirement for a more 

granular, transparent, and risk-sensitive approach to 

reserving compared to earlier standards. Under IFRS 17, 

insurers must measure insurance contracts at a more 

detailed level, typically on a contract-by-contract basis or 

in groups of contracts with similar characteristics [6]. 

IFRS 17 introduces the concept of discounting cash 

flows in the calculation of insurance liabilities. This 

means that reserves now reflect the time value of money, 

ensuring a more accurate estimate of future reserves as 

illustrated in this paper. Additionally, IFRS 17 requires a 

risk adjustment for non-financial risks, which adjusts 

reserves to reflect the uncertainty around insurance 

obligations [7] which is also presented in this paper. The 

introduction of the Contract Service Margin (CSM) 

represents a key innovation in IFRS 17. It defers the 

recognition of profits to match the delivery of insurance 

services, ensuring that insurers only recognize earnings as 

they provide coverage this is too presented in this study 

[8]. 

IFRS 17 aligns actuarial reserving more closely with 

economic reality and regulatory frameworks such as 

Solvency II. Both frameworks require the use of market-

consistent assumptions and forward-looking estimates. 

For actuarial professionals, this alignment leads to 

enhanced consistency between financial reporting and 

risk management practices, demanding more advanced 

actuarial techniques for reserve estimation [9]. The new 

standard enhances transparency by requiring more 

detailed disclosures about the assumptions and methods 
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used in reserving calculations. This enables stakeholders, 

including regulators and investors, to better assess the 

financial health of insurers. As a result, actuarial loss 

reserving must now accommodate more comprehensive 

reporting requirements, making the process more robust 

and transparent. 

In closing, IFRS 17 brings a sophisticated and risk-

sensitive approach to actuarial loss reserving in non-life 

insurance. Its focus on discounted cash flows, risk 

adjustments, and transparency represents a significant 

shift from previous standards, ensuring that loss reserves 

are both more reflective of underlying risks and aligned 

with modern regulatory and market expectations, and this 

has been presented in this paper too. 

 

1.4. Novelty of the study 

This study uniquely combines classical actuarial 

techniques with advanced AI algorithms, such as neural 

networks and random forests, to enhance the accuracy and 

efficiency of loss reserving. By integrating these 

methodologies, the study provides a pioneering approach 

that bridges traditional actuarial practices with modern 

data science innovations. The creation of automated 

models for frequency, severity, and inflation, which are 

key components of actuarial loss reserving, represents a 

novel advancement. These models utilize machine 

learning techniques to predict and aggregate reserve 

estimates, offering a dynamic and automated approach to 

actuarial forecasting. The study introduces the concept of 

RAALRM, a new metric designed to provide a robust 

measure of actuarial loss reserves. This approach 

integrates upper and lower reserve estimates to offer a 

more comprehensive and reliable evaluation of reserve 

adequacy, representing a significant innovation in reserve 

margin calculations. The methodology proposes a novel 

framework for distributing reserves across different 

policyholder categories. By customizing reserve 

allocations based on policyholder types and their specific 

risk profiles, the study enhances the precision and fairness 

of reserve distribution. The study introduces a detailed 

bonus rate system for policyholder categories, reflecting 

variations in claims experience and risk. This system 

provides a refined approach to adjusting reserves based on 

actual claims data, contributing to more accurate reserve 

estimates. 

The study pioneers the integration of advanced AI 

techniques, specifically Random Forest models, into 

actuarial loss reserving. By comparing these AI-driven 

models with traditional actuarial methods, the study not 

only highlights the superior predictive performance of AI 

but also sets a new standard for incorporating machine 

learning into actuarial practice. The development of a 

comprehensive framework that separately models 

frequency, severity, and inflation represents a significant 

innovation. Each component model is tailored to predict 

specific aspects of loss reserves, allowing for more 

granular and accurate forecasting compared to traditional 

methods that often use aggregated or less detailed 

approaches. The study’s use of robustness and stress 

testing, including perturbations and scenario analysis, 

represents a cutting-edge approach to validating the 

stability and resilience of actuarial models. This rigorous 

testing ensures that the models are robust under varying 

conditions and provides a deeper understanding of their 

performance in uncertain environments. 

Explicitly incorporating IFRS 17 requirements into the 

AI-driven models, including the calculation of 

Contractual Service Margin (CSM) and Present Value of 

Future Cash Flows (PVFCF), ensures that the proposed 

models are aligned with contemporary regulatory 

standards. This integration addresses a critical need for 

compliance and sets a precedent for future research and 

practice in actuarial science. 

 

1.5. Contribution to Actuarial Science 

By integrating AI-driven models with traditional 

actuarial methods, this study contributes to the 

advancement of actuarial science through improved 

accuracy and efficiency in loss reserving. The use of 

machine learning algorithms allows for more precise 

predictions and optimizes the reserve estimation process. 

The development of automated actuarial models and the 

RAALRM metric represents a significant methodological 

contribution to the field. These innovations offer new 

tools for actuaries to better manage and assess loss 

reserves, enhancing their ability to handle complex and 

dynamic insurance data. The study’s focus on 

policyholder-centric reserve allocation provides valuable 

insights into how reserves can be more accurately 

distributed based on policyholder risk profiles. This 

approach promotes more equitable and targeted reserve 
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management, aligning with the diverse nature of 

insurance portfolios. The introduction of a comprehensive 

bonus rate system and a robust margin calculation 

framework contributes to the evolution of reserve 

management practices. These advancements help 

actuaries better account for variations in claims 

experience and policyholder behavior, leading to more 

informed decision-making. The study demonstrates the 

practical application of data science techniques within the 

realm of actuarial science, fostering interdisciplinary 

advancements and setting a precedent for future research. 

This bridging of fields enhances the overall capability of 

actuarial science to adapt to modern technological 

developments. 

The application of robust testing methodologies, 

including scenario analysis and stress testing, advances 

the field by establishing best practices for validating 

actuarial models. These techniques ensure that models are 

reliable and adaptable to various market conditions and 

regulatory environments. The study’s focus on aligning 

AI-driven models with IFRS 17 regulations contributes to 

the field by ensuring that actuarial practices meet 

contemporary accounting standards. This alignment 

supports the transition to modern regulatory frameworks 

and enhances the credibility of actuarial models in a 

regulated environment. 

In short, this study’s novelty lies in its innovative 

integration of AI and machine learning with actuarial 

methods, its introduction of new metrics and frameworks, 

and its contributions to more precise and equitable reserve 

management. These advancements represent a significant 

step forward in the field of Actuarial Science, offering 

both theoretical and practical benefits. In addition to that, 

this study’s novelty lies in its integration of AI with 

traditional actuarial methods, its development of a 

comprehensive and detailed modeling framework, and its 

rigorous approach to model validation. Its contributions to 

actuarial science are marked by improved predictive 

accuracy, enhanced regulatory compliance, and valuable 

insights into policyholder-specific reserve allocation. 

 

2. Survey of Methods and Literature Review 

Automated actuarial loss reserving in non-life 

insurance has significantly advanced with the advent of 

actuarial data science and artificial intelligence (AI). 

Traditional loss reserving methods, which include chain-

ladder and Bornhuetter-Ferguson methods, are being 

complemented and in some cases replaced by 

sophisticated AI-driven techniques. This review surveys 

these methods, focusing on the integration of data science 

and AI in actuarial practices. 

Chain-Ladder Method The chain-ladder method, 

introduced by [10], is one of the oldest and most 

commonly used techniques for loss reserving. It relies on 

the assumption that future claims development patterns 

will follow historical trends. This method calculates 

reserves by applying development factors derived from 

historical data to current claims [10]. The Bornhuetter-

Ferguson (BF) method, as outlined by [11], combines the 

chain-ladder approach with a priori estimates of ultimate 

claims. This method is particularly useful when dealing 

with new or emerging lines of business where historical 

data is limited [11]. Generalized Linear Models (GLMs) 

GLMs, as discussed by [10], have been widely adopted 

for actuarial modeling due to their flexibility and ability 

to handle various types of data distributions. They have 

been utilized in loss reserving to model the relationship 

between claim amounts and explanatory variables [10]. 

Machine Learning Techniques Recent advancements 

in machine learning have introduced new methodologies 

for loss reserving. Random forests, gradient boosting 

machines, and neural networks have shown promising 

results in improving reserve predictions. For instance, the 

paper [11] explored the use of machine learning methods 

for actuarial applications and highlighted their potential 

advantages over traditional methods. 

Deep Learning Models Deep learning, particularly 

neural networks, has gained traction in actuarial science 

due to its ability to capture complex patterns in data.  

demonstrated that deep learning models could outperform 

traditional models in loss reserving tasks by learning 

intricate relationships from large datasets [12]. 

Ensemble methods, such as stacking and bagging, 

combine multiple models to improve predictive 

performance. The paper [13] provided an overview of 

ensemble techniques, illustrating how they can enhance 

the accuracy and robustness of loss reserving predictions 

[13]. Hybrid Models Hybrid approaches that combine 

traditional actuarial methods with AI techniques are 

emerging. These models leverage the strengths of both 

approaches, providing more robust and accurate loss 
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reserves. For example, [14] proposed a hybrid model 

integrating GLMs with machine learning algorithms to 

improve loss reserving accuracy. Automated Reserving 

Systems Automated systems incorporating AI have been 

developed to streamline the reserving process. These 

systems utilize AI to automate data preprocessing, model 

selection, and reserve estimation, thus reducing manual 

effort and increasing efficiency. The paper [15] reviewed 

such systems and discussed their implications for the 

actuarial profession. 

The integration of actuarial data science and AI into 

loss reserving practices represents a significant 

advancement in non-life insurance. Traditional methods 

continue to be valuable, but AI-driven approaches offer 

enhanced accuracy and efficiency. The evolving 

landscape of actuarial data science promises further 

innovations and improvements in automated reserving 

solutions. 

 

3. Methodology 

The research methodology for investigating actuarial 

data science-based AI solutions for automated loss 

reserving in non-life insurance presents a structured 

approach to gather, analyze, and interpret data and this 

methodology integrates both traditional actuarial 

techniques and modern data science methods to evaluate 

the effectiveness and efficiency of AI-driven solutions in 

loss reserving. 

 

3.1. Research Design 

The research design for this study is a mixed-methods 

approach, combining quantitative and qualitative analyses 

to provide a comprehensive evaluation of AI solutions in 

loss reserving. This design allows for the integration of 

numerical data and theoretical insights, providing a robust 

framework for assessing the impact of AI technologies on 

actuarial practices. Quantitative Research Quantitative 

research involves the use of statistical methods to analyze 

numerical data. In this study, quantitative methods are 

used to evaluate the performance of AI-driven loss 

reserving models compared to traditional methods. Key 

aspects include model comparison, data preparation, and 

analytical techniques. 

 

3.1.1. Model comparison 

Employing statistical tests and metrics to compare the 

accuracy, efficiency, and reliability of AI models (e.g., 

neural networks, random forests) [16]. Utilizing the 

simulated data set in this study to train and test AI models. 

Performance metrics such as mean squared error (MSE), 

mean absolute error (MAE), and reserve accuracy are 

calculated to evaluate model effectiveness [17]. 

On a separate note, conducting semi-structured 

interviews with actuaries, data scientists, and insurance 

professionals helps to gather insights on the challenges 

and benefits of AI in loss reserving [18], [19], [20], [21] 

and also analyzing case studies from insurance companies 

that have implemented AI-driven reserving solutions to 

understand real-world applications and outcomes [22]. 

 

3.1.2. Data preparation 

Data preparation involved cleaning and preprocessing 

data to ensure quality and consistency. This includes 

handling missing values, normalizing data, and splitting 

datasets into training and testing subsets for model 

evaluation. 

 

3.1.3. Analytical techniques 

Statistical techniques were employed to analyze the 

performance of traditional and AI-based models [23]. 

Various machine learning algorithms are applied to 

develop predictive models for loss reserving. Algorithms 

such as regression models, decision trees, and neural 

networks are used to predict future claims based on 

historical data [24]. Evaluating model performance using 

cross-validation techniques to ensure robustness and 

generalizability of the results [25]. 

The research methodology outlined provides a 

comprehensive framework for evaluating actuarial data 

science-based AI solutions in automated loss reserving. 

By integrating quantitative and qualitative approaches, 

the study aims to provide a nuanced understanding of how 

AI technologies impact actuarial practices and their 

effectiveness in improving loss reserving accuracy. 
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3.2. The proposed approach 

This section describes the general Machine learning-

based Automated Actuarial Loss Reserving Models using 

the machine learning methods presented in Table A1. 

 
3.2.1. Policyholder Actuarial Loss Reserving 

Categories 

To begin, the following four main policyholder 

categories are proposed, as presented in Table 2. 

Table 2. Automated Actuarial Loss Reserving Risk Pricing 

Policyholder Categories. 

Automated Actuarial Loss Reserving Policyholder Categories 

Category A 
Policyholder with both Car Insurance and 

Microfinance policies 

Category B Policyholder with Microfinance policy only 

Category C Policyholder with Car Insurance policy only 

Category D Policyholder with no policy 

 

3.2.2. Development of the AI-Based Automated 

Actuarial Loss Reserving Models 

This subsection delineates the methodologies 

employed for estimating, forecasting, and validating the 

actuarial models. The process encompasses the following 

steps: 

1. Automated Actuarial Frequency Models: For this 

model, the dependent variable 𝑌freq represents 

the Comprehensive Number of Claims, denoted 

mathematically as 𝑌freq = 𝑓freq(X), where X 

denotes the vector of covariates. The model is 

specified as: 

𝑌freq = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑝𝑋𝑝 + 𝜖freq (41) 

  where 𝛽𝑖 are the regression coefficients and 𝜖freq 

represents the error term. 

2. Automated Actuarial Severity Models: This 

model focuses on the Comprehensive Claim 

Amount, 𝑌sev. The dependent variable is 

modeled as 𝑌sev = 𝑓sev(𝐗), and the model is 

expressed as: 

𝑌sev = 𝛾0 + 𝛾1𝑋1 + 𝛾2𝑋2 + ⋯ + 𝛾𝑞𝑋𝑞 + 𝜖sev, 
 

(42) 

  where 𝛾𝑖 are the severity coefficients and 𝜖sev is 

the error term. 

3. Automated Actuarial Loss Reserve Inflation 

Models: For modeling inflation, the dependent 

variable 𝐼inf is the Inflation Index derived from 

the Consumer Price Index (CPI). The model is 

given by: 

𝐼inf = 𝛿0 + 𝛿1𝑋1 + 𝛿2𝑋2 + ⋯ + 𝛿𝑟𝑋𝑟 + 𝜖inf, 
 

(43) 

  where 𝛿𝑖 are the inflation coefficients and 𝜖inf 

represents the error term. 

The integration of the three aforementioned models is 

achieved through a multiplicative aggregation of their 

predictions. Specifically, if 𝑌̂freq, 𝑌̂sev, and 𝐼inf denote the 

predicted values from the frequency, severity, and 

inflation models respectively, then the combined forecast 

𝑌̂combined is computed as: 

𝑌̂AALR = 𝑌̂freq × 𝑌̂sev × 𝐼inf. (44) 

where 𝐴𝐴𝐿𝑅 is the Automated Actuarial Loss Reserve 

and thus this composite prediction leverages the 

individual model forecasts to estimate the Automated 

Actuarial Loss Reserves, thereby integrating the effects of 

frequency, severity, and inflation into a unified actuarial 

forecast. 

 
3.3. Setting Up the Final Automated Actuarial 

Loss Reserving Models 

Following the automation of predictions derived from 

the aforementioned regression models, we proceed to 

compute the Inflation-Adjusted Frequency Severity 

Automated Actuarial Loss Reserves. This quantity is 

redefined and referred to as the Automated Actuarial Loss 

Reserve Margin (AALRM). 

Let 𝑌AALR denote the Comprehensive Claim Amount 

extracted from the original test data set. The Upper 

Actuarial Loss Reserve Margin (UAALRM) is calculated 

by summing the AALRM with 𝑌AALR, expressed as: 

UAALRM = 𝑌AALR + AALRM. (45) 

Similarly, the Lower Automated Actuarial Loss 

Reserve Margin (LAALRM) is derived by subtracting the 

AALRM from 𝑌AALR: 

LAALRM = 𝑌AALR − AALRM. (46) 

The Robust Automated Actuarial Loss Reserve 

Margin (RAALRM) is then determined as the average of 

the UAALRM and LAALRM: 
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RAALRM =
UAALRM + LAALRM

2
. (47) 

A new data set is constructed containing the three 

principal variables: RAALRM, LAALRM, and 

UAALRM. A final regression model is fitted with 

RAALRM as the dependent variable and LAALRM and 

UAALRM as independent variables. This regression 

model is expressed as: 

RAALRM = 𝛼0 + 𝛼1LAALRM + 𝛼2UAALRM
+ 𝜖RAALRM, 

(48) 

where 𝛼0, 𝛼1, and 𝛼2 are the regression coefficients, 

and 𝜖RAALRM denotes the error term. 

The model provides predictions for the Robust 

Automated Actuarial Loss Reserves (RAALR), which are 

then aggregated to compute the Total RAALR. 

Specifically, if RAALR̂
𝑖 represents the predicted RAALR 

for observation 𝑖, the Total RAALR is given by: 

Total RAALR = ∑ RAALR̂
𝑖

𝑛

𝑖=1

, (49) 

where 𝑛 is the number of observations in the data set. 

This process results in a comprehensive estimation of 

the actuarial loss reserves, integrating the effects of 

frequency, severity, and inflation adjustments into a 

robust final margin. 

 

3.4. Terminology and Assumptions for 

Automated Actuarial Loss Reserving 

Models 

The following terminology concerning actuarial loss 

reserving is defined, including both existing and new 

types of reserves, as presented in Table 3. 

Table 3. Definition of Types of proposed Actuarial Reserves. 

Type of Actuarial 

Loss Reserve 
Definitions 

IBNYR Incurred But Not Yet Reported Reserve 

RBNYS Reported But Not Yet Settled Reserve 

REOPENED Reopened Reserve 

REINSURANCE Reinsurance Reserve 

• IBNYR (Incurred But Not Yet Reported): Reserve 

allocated for incurred claims not yet reported or 

known to the insurer. Applicable to all policyholder 

categories defined in Table 2. 

• RBNYS (Reported But Not Yet Settled): Reserves 

for reported but not yet settled claims from both 

microfinance and car insurance services. 

• REOPENED (Reopened Reserve): Reserves for 

claims that were previously closed or partially paid 

but have been reopened for full settlement. 

• REINSURANCE (Reinsurance Reserve): Reserves 

for catastrophic losses from either microfinance or car 

insurance services. 

 

3.5. Proposed Framework for Distribution of 

Automated Actuarial Loss Reserves 

The proposed framework for distributing the 

Automated Actuarial Loss Reserves is shown in Table 4. 

Table 4. Proposed Framework for Distribution of Automated 

Actuarial Loss Reserves. 

Type of Reserve 
Proposed Automated Actuarial Loss 

Reserves Distribution 

IBNYR 80% of Total RAALR 

RBNYS 15% of Total RAALR 

REOPENED 4% of Total RAALR 

REINSURANCE 1% of Total RAALR 

As indicated in Table 4, a large portion of the Total 

RAALR is allocated to IBNYR reserves (80%) to cover 

unreported comprehensive claim amounts. The model 

assumes efficient claim settlement upon flagging, leading 

to lower proportions for RBNYS reserves (15%), 

REOPENED reserves (4%), and REINSURANCE 

reserves (1%). 

 

3.6. Distribution of Reserves Across 

Policyholder Categories 

The assumptions for the distribution of reserve types 

across policyholder categories are outlined in Table 5. 

According to Table 5, Category A, which includes 

policyholders with both microfinance and car insurance 

policies, receives the highest proportion (50%). Category 

B follows with 30%, Category C with 20%, and Category 

D with 0%, as it has no active policyholders. 
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Table 5. Policyholder Reserve Allocation Categories. 

Policyholder Reserve Allocation Categories 

 
Category 

A 

Category 

B 

Category 

C 

Category  

D 

IBNYR 50% 30% 20% 0% 

RBNYS 50% 30% 20% 0% 

REOPENED 50% 30% 20% 0% 

REINSURANCE 50% 30% 20% 0% 

 

3.7. Computations of the proposed types of 

Reserves 

Let CAALR𝑖 denote the Comprehensive Automated 

Actuarial Loss Reserve for policyholder category 𝑖. The 

CAALR for each policyholder category is computed as 

follows: 

CAALR𝑖 = ∑ 𝑅𝑖𝑗

𝑛𝑖

𝑗=1

, (50) 

where 𝑅𝑖𝑗 represents the reserve associated with the 𝑗-

th policyholder within category 𝑖, and 𝑛𝑖 is the total 

number of policyholders in category 𝑖. The 

comprehensive reserve for each category is thus derived 

from the summation of individual reserves across all 

policyholders within that category. 

Let ACAALR denote the Aggregate Comprehensive 

Automated Actuarial Loss Reserve. It is calculated by 

aggregating the CAALR values across all policyholder 

categories. Mathematically, this can be expressed as: 

ACAALR = ∑ CAALR𝑖

𝑘

𝑖=1

, (51) 

where 𝑘 represents the total number of policyholder 

categories. The ACAALR is the summation of the 

CAALR for each individual policyholder category, 

providing a holistic measure of the total loss reserves 

required across the entire portfolio. 

 

3.8. Policyholder Category No Claims Bonus 

Rates 

Assumptions regarding bonus rates for each 

policyholder reserving category are detailed in Table 6. 

 

Table 6. Policyholder Category No Claims Bonus Rate. 

Category 
Base Bonus 

Rates 

Variable Bonus 

Rates 

Final Bonus 

Rates 

A 1% 4% 5% 

B 1% 3% 4% 

C 1% 2% 3% 

D 0% 0% 0% 

As shown in Table 6, policyholders in each category 

are entitled to a base bonus rate. The variable bonus rate 

is the difference between the final and base bonus rates 

and depends on claim amounts. The final bonus rate is the 

sum of the base and variable bonus rates. Category A has 

the highest final bonus rate (5%) due to the large 

proportion of active policyholders, followed by 

Categories B (4%) and C (3%), with Category D receiving 

no bonus. 

 

The Evaluation of Policyholder-Based Automated 

Actuarial Loss Reserves is carried out for two 

scenarios: the short-term and the long-term periods. 

 
3.9. Best model (ranger) evaluation 

3.9.1. Data preparation 

The best model evaluation begins with the preparation 

of a dataset, specifically a simulated general insurance 

dataset. This dataset includes variables pertinent to non-

life insurance claims, such as policy status, policy type, 

car ownership, policy renewals, exposure, and more. The 

data is split into training and testing sets, with 80% used 

for model training and the remaining 20% reserved for 

testing. 

 

3.9.2. Model Development 

Frequency Model: To estimate the number of claims, 

a Random Forest model is constructed using the ranger 

package in R. The model is trained on a range of predictor 

variables including policy-related factors and 

demographic attributes. Predictions are made on the test 

set, and model performance is evaluated using Mean 

Squared Error (MSE), Mean Absolute Error (MAE), and 

Root Mean Squared Error (RMSE). 
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Severity Model: A second Random Forest model 

predicts the number of claims based on similar predictors. 

Performance metrics (MSE, MAE, and RMSE) are 

calculated to assess the accuracy of the severity estimates. 

Inflation Model: The third Random Forest model 

predicts the inflation index, a critical component for 

adjusting claim amounts. This model is also evaluated 

using MSE, MAE, and RMSE. 

 

3.9.3. Automated Actuarial Loss Reserves 

Calculation 

The automated actuarial loss reserves are calculated by 

multiplying the predicted number of claims, severity, and 

inflation index. This product represents the estimated 

reserves required to cover future claims, adjusted for 

inflation. 

 

3.9.4. Model comparison between the Ranger 

model and Simulated Chain Ladder model 

To validate the performance of the Random Forest-

based loss reserving model, results are compared with 

traditional actuarial methods, specifically the Chain 

Ladder method. The Chain Ladder model is simulated 

using synthetic claim amounts to estimate loss reserves. A 

comparison is made between the reserves estimated by the 

Chain Ladder method and those derived from the Random 

Forest model. 

 

3.9.5. IFRS 17 Compliance of the Ranger Model 

The IFRS 17 regulations require insurers to recognize 

and measure insurance contracts in a manner that reflects 

their financial position and performance. To ensure 

compliance with IFRS 17, additional calculations are 

performed to determine the Contractual Service Margin 

(CSM) and Present Value of Future Cash Flows (PVFCF). 

This involves: 

− Predicting future cash flows based on the loss 

reserves. 

− Discounting these future cash flows to present 

value. 

− Calculating the CSM as the difference between the 

loss reserves and the discounted cash flows. 

 

3.9.6. Robustness and Stress Testing 

Robustness is tested by introducing perturbations to 

the predicted values and observing the impact on the 

automated actuarial loss reserves. This involves adding 

random noise to the predictions and comparing the results 

to those obtained from the original model. Summary 

statistics and density plots are used to assess the stability 

of the model under perturbations. Stress tests are 

conducted by varying key parameters such as frequency, 

severity, and inflation rates. Multiple scenarios are 

generated to evaluate how changes in these parameters 

affect the loss reserves. This includes base and stressed 

scenarios, with results visualized using box plots and 

summary statistics. 

 

3.9.7. Scenario Analysis 

Scenario analysis involves simulating different 

potential future states to understand the impact of varying 

assumptions on the automated actuarial loss reserves. This 

includes adjusting frequency, severity, and inflation rates 

within defined ranges and assessing the impact on the 

reserves. 

 

3.10. Novelty in Methodology 

The methodology outlined in this study introduces 

several novel elements that advance the field of actuarial 

science and automated loss reserving under IFRS 17. The 

key innovations are: 

− Integration of AI-Driven Models with Traditional 

Methods: The study combines advanced machine 

learning algorithms, specifically Random Forests, 

with traditional actuarial methods such as the 

Chain Ladder technique. This hybrid approach 

enhances the robustness and accuracy of loss 

reserving models by leveraging the predictive 

power of AI while maintaining the interpretability 

and historical context of traditional methods. 

− Comprehensive Model Framework: The 

development of a multi-faceted AI-driven 

actuarial model framework is a significant 

innovation. The methodology includes separate 

models for frequency, severity, and inflation, each 

tailored to predict specific components of loss 

reserves. This detailed segmentation allows for a 
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more nuanced and accurate estimation of reserves 

compared to traditional lumped models. 

− Innovative Aggregation Technique: The 

methodology introduces a novel aggregation 

technique where the predictions from frequency, 

severity, and inflation models are combined 

multiplicatively to estimate the Automated 

Actuarial Loss Reserves (AALR). This approach, 

which integrates the effects of multiple predictive 

components into a unified forecast, provides a 

more comprehensive view of future claims than 

simple additive methods. 

− Robustness and Stress Testing: The methodology 

employs rigorous robustness and stress testing 

techniques, including the introduction of random 

noise and the evaluation of multiple stress 

scenarios. This rigorous testing framework 

ensures that the AI-driven models are not only 

accurate under normal conditions but also resilient 

to variations and uncertainties, thereby enhancing 

their practical applicability. 

− IFRS 17 Compliance Integration: A distinctive 

feature of the methodology is its explicit alignment 

with IFRS 17 requirements. By calculating the 

Contractual Service Margin (CSM) and Present 

Value of Future Cash Flows (PVFCF) based on 

AI-driven predictions, the study ensures that the 

loss reserving models comply with the latest 

accounting standards, thereby bridging the gap 

between actuarial practice and regulatory 

requirements. 

− Policyholder-Specific Reserve Allocation: The 

methodology’s approach to reserve distribution 

across different policyholder categories, including 

innovative bonus rates and reserve types, 

represents a novel application of AI to tailor 

actuarial reserves. This category-specific focus 

enhances the precision of reserve allocations and 

better reflects the risk profiles of different 

policyholder groups. 

− Scenario Analysis and Prediction Adjustments: 

The inclusion of scenario analysis, which involves 

simulating various future states to assess the 

impact on reserves, is a unique contribution. This 

technique allows for a deeper understanding of 

how different assumptions affect the loss reserves 

and provides valuable insights for decision-

making under uncertainty. 

In a nutshell, the novelty of this methodology lies in its 

integration of cutting-edge AI techniques with traditional 

actuarial practices, the development of a comprehensive 

and segmented model framework, rigorous testing 

procedures, and alignment with contemporary regulatory 

standards. These innovations collectively advance the 

field of automated loss reserving and offer a more precise, 

compliant, and adaptable approach to actuarial practice. 

 

4. Data 

Simulated research data refers to information 

generated through simulation processes, often used to 

mimic real-world scenarios for analysis and testing 

purposes. This type of data is not collected from actual 

experiments or observations but is created using statistical 

models, algorithms, or other computational methods to 

replicate conditions or outcomes that researchers are 

interested in studying [26] and [27]. 

 

4.1. The general structure of the simulated non-

life insurance data 

The Comprehensive General Car Insurance and 

Microfinance data has been simulated for the period from 

1989 to 2022, spanning 33 years. The dataset includes a 

sample of 40,000 policyholders and is organized into 

seven primary categories: Policyholder Personal Data, 

Microfinance Policyholder Data, Policyholder Vehicle 

Data, Comprehensive Policyholder Claim Data, 

Comprehensive Policyholder Premium Payment Data, 

and Policyholder External Data. 

In developing the Automated Actuarial Loss 

Reserving Model, 48 variables derived from these 

categories were utilized, incorporating eight machine 

learning algorithms. Of these 48 variables, particular 

focus was placed on three key principal variables 

(described in subsection 4.3 below), which have been 

crucial for automating both car insurance and 

microfinance services on a single platform. 
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4.2. Contribution of the Simulated Data to 

Actuarial AI Solutions 

Risk Assessment and Segmentation: Variables such 

as Policy Status, Policy Type, and Claim Score assist in 

segmenting policyholders and assessing their risk 

profiles. 

Reserve Calculation: Claim-related variables like 

Claim Incurred and Case Reserves are crucial for 

determining reserves and predicting future liabilities. 

Predictive Modeling: Combining historical data (e.g., 

Claim History) with external factors (e.g., Retained 

Income) supports predictive modeling for loss reserving. 

Financial Behavior Analysis: Microfinance data 

(e.g., Amount Invested) provides insights into financial 

behaviors that affect risk and reserve calculations. 

Inflation and Cost Adjustments: Inflation Index and 

operational costs (e.g., Underwriting costs) are important 

for adjusting reserves and premiums to account for 

inflation and costs. 

This comprehensive dataset enables the development 

of robust actuarial models for automated loss reserving by 

integrating diverse policyholder profiles, claim details, 

and financial factors. 

 

4.3. Principal data Variable Exploratory 

Analysis for Automated Actuarial Loss 

Reserving Model 

The principal data variables are defined as follows: 

Comprehensive Claim Amount () is defined as the 

sum of the claim incurred from car insurance services and 

the amount requested from microfinance services. 

Mathematically, this can be expressed as: 

CCA = CI + AR (52) 

where: 

− represents the Claim Incurred from car 

insurance services. 

− represents the Amount Requested from 

microfinance services. 

Comprehensive Paid Amount () is calculated as the 

sum of the claims paid from car insurance services and the 

microfinance amounts paid by the insurance company. 

This can be formulated as: 

CPA = CP + MFAP (53) 

  where: 

− denotes the Claims Paid from car insurance 

services. 

− denotes the Microfinance Amount Paid by the 

insurance company. 

Comprehensive Number of Claims () is defined as 

the sum of the number of claims from car insurance 

services and the number of requests from microfinance 

services. This can be expressed as: 

CNC = NC + NR (54) 

where: 

− NC represents the Number of Claims from car 

insurance services. 

− NR represents the Number of Requests from 

microfinance services. 

Some further exploratory data analysis is shown 

below. 

 

Figure 1. Histograms for key data variables. 

Figure 1 shows that the three main variables are close 

to being normally distributed, as indicated by the bell 

shape. 

 
4.4. Correlation Analysis for key data variables 

Correlation analysis is a statistical technique used to 

measure the strength and direction of the relationship 

between two or more variables [27]. It helps in 

understanding how changes in one variable are associated 

with changes in another variable. In the context of 

simulated data variables, correlation analysis can provide 
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insights into the dependencies and interactions between 

different variables generated through simulation. 

The most common measure of correlation is the 

correlation coefficient, often denoted by 𝜌. It ranges from 

-1 to 1. A 𝜌 of 1 indicates a perfect positive correlation (as 

one variable increases, the other variable also increases), 

-1 indicates a perfect negative correlation (as one variable 

increases, the other variable decreases), and 0 indicates no 

correlation. In addition to that, Positive Correlation is hen 

an increase in one variable is associated with an increase 

in the other variable, Negative Correlation is when an 

increase in one variable is associated with a decrease in 

the other variable and finally No Correlation when there 

is no apparent relationship between the variables [28]. In 

that regard the results for correlation analysis for key 

variables is shown below accordingly. 

 

Figure 2. Correlation analysis for key data variables. 

Figure 2 shows a heatmap showing the correlation 

between each pair of variables. Positive correlations are 

presented towards red, negative correlations towards blue, 

and no correlation towards white.  

The correlation matrix shows the pairwise correlation 

coefficients between three key variables: 

− Comprehensive Number of Claims (CNC) 

− Comprehensive Claim Amount (CCA) 

− Comprehensive Paid Amount (CPA) 

The matrix is as follows: 

 CNC CCA CPA 

CNC 

CCA 

CPA 

1.00 

-0.00 

0.00 

-0.00 

1.00 

-0.00 

0.00 

-0.00 

1.00 

Diagonal Elements (1.00): These indicate that each 

variable is perfectly correlated with itself, which is 

expected. 

Off-Diagonal Elements: 

− The correlation between the Comprehensive Number 

of Claims and Comprehensive Claim Amount is close 

to zero, indicating a very weak or negligible linear 

relationship between these two variables. 

− The correlation between the Comprehensive Number 

of Claims and Comprehensive Paid Amount is also 

close to zero, suggesting little to no linear 

relationship. 

− The correlation between the Comprehensive Claim 

Amount and Comprehensive Paid Amount is close to 

zero, indicating a negligible linear relationship 

between these two metrics. 

The near-zero correlations among the key variables 

suggest that these variables provide unique, non-

overlapping information about the insurance and 

microfinance processes. This independence is beneficial 

for the development of a robust model as it allows for the 

modeling of different aspects of the data without 

redundancy. Since these variables do not exhibit strong 

correlations, it implies that including all three variables in 

the model might enhance its complexity and accuracy by 

capturing diverse aspects of the data. The model can 

leverage this unique information to improve predictions 

and automate loss reserving more effectively. The lack of 

strong correlations between the key variables may guide 

the feature selection process, ensuring that the model 

includes relevant and diverse variables without redundant 

information. This can lead to better interpretability and 

performance of the AI-based solution. By incorporating 

variables with weak correlations, the model is less likely 

to be overfitted to any single data aspect. This can enhance 

the generalization of the Automated Actuarial Loss 

Reserving Model, making it more reliable across different 

scenarios and datasets. Understanding these relationships 

helps in interpreting the model’s results and the data 

characteristics. It can assist in identifying areas where the 

model may need improvement or where additional data 

might be required to capture underlying patterns. 

In short, the correlation matrix supports the 

development of a more nuanced and effective AI-based 

solution for automated actuarial loss reserving by 
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ensuring that the model leverages a diverse set of 

variables, potentially enhancing its accuracy and 

robustness in non-life insurance applications. 

 

4.5. Factor Analysis and Principal Component 

Analysis 

Factor Analysis is a statistical technique used to 

identify underlying relationships between variables. It 

aims to reduce the number of variables by grouping them 

into factors that represent underlying dimensions. This 

method is commonly used in social sciences, psychology, 

and marketing to identify latent constructs and simplify 

data structures [28]. Principal Component Analysis 

(PCA) is a dimensionality reduction technique that 

transforms a large set of variables into a smaller set of 

uncorrelated components, which capture the maximum 

variance in the data. PCA is often used in exploratory data 

analysis and for predictive modeling to simplify data 

while retaining its essential characteristics [29].  

In the context of factor analysis or principal 

component analysis (PCA), Table 7 shows the factor 

loadings which represent the correlations between the 

variables and the underlying factors or principal 

components. 

Table 7. Factor loadings for key variables. 

Metrics MR2 MR3 MR1 

SS loadings 0.003 0.003 0.000 

Proportion Variance 0.001 0.001 0.000 

Cumulative Variance 0.001 0.002 0.002 

Table 8 shows how the PCA relates to standard 

deviation, proportion of variance, and cumulative 

proportion.  

Table 8. Principal component analysis. 

Metrics PC1 PC2 PC3 

Standard deviation 1.00 1.00 1.00 

Proportion of Variance 0.34 0.33 0.33 

Cumulative Proportion 0.34 0.67 1.00 

All principal components (PC1, PC2, PC3) have the 

same standard deviation of 1.00. This indicates that each 

component has been scaled to have a standard deviation 

of 1, which is typical in PCA to standardize the 

components. The PCA results suggest that the three 

principal components together capture all the variance in 

the dataset. This means that if the original data had more 

variables, the PCA has effectively reduced the 

dimensionality while retaining the full information 

content. In actuarial data science, reducing dimensionality 

can simplify models, reduce computational costs, and 

help in focusing on the most important features. Since 

each component captures a significant portion of the 

variance, the PCA components can be used as new 

features in the AI models for loss reserving. These 

components are uncorrelated and collectively explain all 

the variance, which helps in building models that are 

robust and less likely to suffer from multicollinearity. By 

using principal components as inputs, the model can 

potentially become more efficient. With reduced 

dimensions and uncorrelated features, the AI models for 

actuarial loss reserving can process data more quickly and 

efficiently, which is crucial for real-time or large-scale 

loss reserving applications. The equal proportion of 

variance explained by the principal components suggests 

that each component is contributing meaningfully to the 

model. This can help in understanding the data structure 

better and in explaining the model’s decisions based on 

the transformed components, which can be useful for 

validating and interpreting the results of the loss reserving 

models. 

In the context of automated actuarial loss reserving, 

the insights gained from PCA can lead to better risk 

assessment models. By focusing on principal components 

that encapsulate the majority of the variance, actuaries can 

develop more accurate models for predicting future losses 

and making informed decisions. 

In short, the PCA results indicate that the 

dimensionality of the data can be effectively reduced 

while retaining all the variance. This can positively impact 

the development of AI solutions for automated loss 

reserving by simplifying the data, improving model 

efficiency, and aiding in better risk assessment and 

decision-making. 

 

4.6. Data pre-processing, data scaling and data 

partitioning 

After loading the data in R caret, R package has been 

used to generate the one hot encored the simulated 

General Auto Insurance Microfinance data. From there 

the data has been pre-processed first by scaling it using 

min-max approach followed by data partitioning into 

training data set (80%) and test data set (20%). Data were 

analyzed using R. 
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5. Results 

This section shows results obtained from the 

methodology for our proposed Automated Actuarial Loss 

Reserving Model. 

 

5.1. Machine learning Based Automated 

Actuarial Loss Reserving Model Methods 

Machine learning (ML) methods play a crucial role in 

the construction of Automated Actuarial Loss Reserving 

Models. Furthermore, the ML algorithms can capture 

complex, non-linear relationships in insurance claims data 

that may be challenging for traditional actuarial methods. 

This leads to more accurate and precise loss reserve 

estimates and also handle the Big Data, including 

historical claims, policyholder information, and external 

factors. ML can efficiently process and analyze large 

datasets, making it possible to extract valuable insights 

from this wealth of information. Subsequently, ML 

models can be designed to continuously adapt and update 

based on new data. This enables insurers to have dynamic 

and up-to-date loss reserves, which is especially valuable 

in rapidly changing markets. As the name suggests, 

Automated Actuarial Loss Reserving Models can 

significantly reduce the need for manual calculations and 

interventions. This not only saves time but also minimizes 

the potential for human error. Machine learning models 

can process and analyze data much faster than traditional 

manual methods and this is essential in an industry where 

time is of the essence, particularly for regulatory reporting 

and financial planning. 

In short, ML methods are instrumental in the 

construction of Automated Actuarial Loss Reserving 

Models because they offer improved accuracy, efficiency, 

and flexibility while also enabling real-time updates and 

the ability to detect patterns and emerging trends. This 

contributes to better risk management, regulatory 

compliance, and overall competitive advantages for 

insurance companies. 

 

5.2. Actuarial Loss Reserving Inflation Adjusted 

Frequency Severity Models 

Actuarial Loss Reserving Inflation Adjusted 

Frequency Severity (ALR-IAFS) machine learning-based 

models serve several critical purposes in the insurance 

industry. These models are designed to estimate future 

insurance claim amounts while accounting for inflation, 

claim frequency, and claim severity. ALRIAFS models 

provide insurance companies with accurate estimates of 

future claim amounts, which is essential for financial 

planning and risk management. These models take into 

account the expected number of claims (frequency) and 

the expected size of each claim (severity), adjusted for 

inflation. Moreover, Inflation can erode the value of 

insurance reserves over time. ALR-IAFS models 

explicitly adjust for inflation, ensuring that loss reserves 

remain adequate to cover future claim costs. This is 

particularly important in long-tail insurance lines where 

claims may be paid out over several years. By estimating 

future claim frequencies and severities, insurance 

companies can better understand and manage their 

exposure to risk. ALR-IAFS models allow for more 

informed decisions about capital allocation, underwriting, 

and pricing to mitigate potential financial risks. 

In closing, Actuarial Loss Reserving Inflation 

Adjusted Frequency Severity (ALR-IAFS) machine 

learning-based models are critical tools for insurance 

companies to estimate future claim amounts while 

considering inflation, claim frequency, and severity. 

Ultimately, these models support sound financial 

planning, risk management, regulatory compliance, and 

strategic decision-making, ultimately contributing to the 

financial stability and competitiveness of insurance 

companies. 

The Table 9 below shows a combination of frequency 

models, severity models and finally inflation models as 

shown below. 

Table 9. Actuarial Loss Reserving Inflation Adjusted 

Frequency Severity Models. 

ML 

Model 

Frequency 

Models 
Severity Models Inflation Models 

Time 

(sec) 
RMSE 

Time 

(sec) 
RMSE 

Time 

(sec) 
RMSE 

GLM 1.34 53.4943 0.46 2,009.4710 0.65 0.5129 

GAM 1.16 53.5111 0.99 2,011.7860 0.84 0.5120 

RPART 2.35 53.4166 1.69 2,007.6940 0.79 0.8281 

RANGER 55.93 53.2332 269.12 2,011.8630 62.91 0.5124 

XGB 6.62 53.4074 6.73 2,013.4440 6.82 0.5119 

LAR 12.18 53.6918 15.24 2,012.2690 31.19 0.5124 

SVM 289.67 53.3934 264.64 2,012.6160 1095.67 0.5135 

ANN 8.56 53.6989 9.11 2,011.8730 6.20 0.5121 
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The Table 9 compares different machine learning 

(ML) models across three types of actuarial loss reserving 

models: Frequency, Severity, and Inflation. The table 

includes metrics for each model in terms of computation 

time and Root Mean Square Error (RMSE). 

With regards to Frequency Models: Fastest execution 

time (1.34 seconds) came from GLM with an RMSE of 

53.4943 and this shows a good balance of speed and 

accuracy. GAM is slightly slower than GLM but with 

similar performance (RMSE of 53.5111). RPART 

incurred a moderate speed and RMSE (53.4166), slightly 

better than GLM and GAM. RANGER (is the slowest 

execution time (55.93 seconds) but slightly better RMSE 

(53.2332). XGB is fast with a good RMSE (53.4074), 

making it a competitive choice. LAR is slower than GLM 

and GAM with an RMSE of 53.6918, indicating less 

accuracy in this context. SVM has the slowest execution 

time (289.67 seconds) with RMSE comparable to the best 

models, suggesting it is computationally intensive with a 

comparable performance. ANN has moderate speed and 

an RMSE of 53.6989, performing similarly to other 

models. 

With regards to Severity Models: GLM scooped the 

fastest execution time (0.46 seconds) with an RMSE of 

2,009.4710, showing a trade-off between speed and 

accuracy. GAM is slightly slower (0.99 seconds) with a 

similar high RMSE (2,011.7860). RPART has moderate 

speed with an RMSE of 2,007.6940, showing slightly 

better performance. RANGER is much slower (269.12 

seconds) but with an RMSE of 2,011.8630, similar to 

GLM and GAM.XGB has moderate execution time (6.73 

seconds) with an RMSE of 2,013.4440, slightly worse 

than GLM and GAM.LAR has slowest execution time 

(15.24 seconds) with an RMSE of 2,012.2690, 

comparable to other models. SVM is the slowest in terms 

of execution time (264.64 seconds) with an RMSE close 

to other models. ANN has moderate execution time (9.11 

seconds) with an RMSE of 2,011.8730, performing 

similarly to XGB and LAR. 

With regards to Inflation Models: GLM has the fastest 

execution time (0.65 seconds) with an RMSE of 0.5129, 

indicating good performance. GAM has similar execution 

time (0.84 seconds) with slightly better RMSE (0.5120). 

RPART is slightly slower (0.79 seconds) with an RMSE 

of 0.8281, showing less accuracy. RANGER is slow 

(62.91 seconds) with an RMSE of 0.5124, which is 

comparable to GLM and GAM.XGB has fast execution 

time (6.82 seconds) with an RMSE of 0.5119, similar to 

GLM and GAM.LAR has moderate execution time (31.19 

seconds) with an RMSE of 0.5124.SVM has slowest 

execution time (1,095.67 seconds) with an RMSE of 

0.5135, indicating a trade-off between speed and 

accuracy. ANN has moderate execution time (6.20 

seconds) with an RMSE of 0.5121, similar to XGB and 

slightly better than SVM. 

In closing, the Table 9 helps in choosing the 

appropriate model based on the trade-offs between 

computation time and RMSE. For example, GLM and 

XGB provide a good balance of speed and accuracy across 

different models. GLM, XGB, and ANN are among the 

faster models with relatively low RMSE values in the 

inflation models, making them suitable for applications 

where computation speed is crucial. Models like 

RANGER and SVM show varying performance across 

different types of models. For severe cases where 

accuracy is paramount, even if slower, these models might 

be considered based on the need for precision. The table 

provides insights into which models perform well under 

different conditions. For instance, GLM and XGB are 

good choices for models where a balance between speed 

and accuracy is needed, while RANGER and SVM might 

be used when model accuracy is more critical and 

computational resources are available. Understanding 

these trade-offs helps in selecting the best model for 

specific applications within actuarial loss reserving, 

optimizing both model performance and operational 

efficiency. 

 

5.3. Total Automated Actuarial Inflation 

Adjusted Frequency Severity Loss Reserves 

The Automated Actuarial Inflation Adjusted Loss 

Reserves (AAIALR) are computed by multiplying the 

predicted number of claims, the predicted claim amounts, 

and the predicted inflation values obtained from the 

machine learning models applied to the test data. The total 

AAIALR is then determined by summing these individual 

values, as represented by Equation (55): 

𝐴𝐴𝐼𝐴𝐿𝑅 = 𝐹𝑟𝑒𝑞predictions × 𝑆𝑒𝑣predictions × 𝐼𝑛𝑓𝑙predictions (55) 

From the Table 10, GLM (405.6083) attained the 

highest score for Total AALR predictions, followed by 
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XGB (405.3866), followed by ANN (405.2760) and the 

least came from came from RPART (182.2968). 

Table 10. Total Automated Actuarial Loss Reserving Inflation 

Adjusted AALR. 
Actuarial Loss Reserve Models 

ML Model Total AALR Predictions 

GLM 405.6083 

GAM 400.6047 

RPART 182.2968 

RANGER 402.8569 

XGB 405.3866 

LAR 402.2832 

SVM 397.9315 

ANN 405.2760 

 

5.4. Final Machine Learning models for 

estimating and predicting the Robust 

Automated Actuarial Loss Reserves 

The results for the final Machine Learning models for 

estimating and predicting the Robust Automated 

Actuarial Loss Reserve have been constructed following 

the methodology sub subsection 3.3 hence the following 

results are obtained and presented in a Table 11.  

Table 11. Final Automated Actuarial Loss Reserving Model. 
Second Stage Actuarial Loss Reserve Models 

ML Model 
Time 

(sec) 
pred value Max Min Range RMSE 

GLM 0.02 2,002.8090 2,676.8750 1,353.8920 1,322.9830 0.0000 

GAM 0.00 1,998.4520 2,673.9730 1,306.0440 1,367.9280 0.0000 

RPART 0.00 1,954.2920 2,423.8510 1,583.0360 840.8148 37.7813 

RANGER 2.53 2,001.7290 2,666.5370 1,281.9200 1,384.6170 277.0213 

XGB 0.34 2,004.1210 2,713.3630 1,335.6060 1,377.7570 2.6967 

LAR 0.69 2,000.9420 2,610.6030 1,306.0440 1,304.5590 0.0000 

SVM 0.48 1,039.6070 2,020.6850 150.4887 1,870.1960 997.5602 

ANN 0.39 918.4288 1,857.0300 89.1541 1,767.8760 1,108.6850 

The processing time was affectionately lower for all 

machine learning algorithms when compared to previous 

models presented on Table 9 since the sample size is now 

smaller and also run on two key defined independent 

variables. GLM and GAM have the shortest execution 

times (0.02 and 0.00 seconds, respectively), making them 

the fastest models in this context. RANGER takes the 

longest time (2.53 seconds), suggesting it is the most 

computationally intensive model among those listed. 

XGB, SVM, and ANN have moderate execution times 

(0.34, 0.48, and 0.39 seconds, respectively). GLM yields 

the highest predicted value (2,002.8090), followed closely 

by XGB (2,004.1210) and RANGER (2,001.7290). ANN 

provides the lowest predicted value (918.4288), indicating 

it predicts substantially lower values compared to other 

models. SVM has the largest range of prediction 

(1,870.1960), indicating a wide spread between its 

maximum and minimum predictions. ANN and XGB also 

show significant ranges (1,767.8760 and 1,377.7570, 

respectively).GAM and LAR have the smallest ranges 

(1,367.9280 and 1,304.5590, respectively), suggesting 

less variability in their predictions. GLM, GAM, and LAR 

achieve perfect RMSE scores of 0.0000, indicating that 

these models have highly accurate predictions in the 

context provided. XGB has a low RMSE of 2.6967, 

reflecting relatively good accuracy. RPART has a 

moderate RMSE of 37.7813, showing acceptable 

performance but less accurate than GLM, GAM, and 

LAR. SVM and ANN have high RMSE values (997.5602 

and 1,108.6850, respectively), indicating poorer 

prediction accuracy compared to the other models. 

 

5.5. Distribution of Total Automated Actuarial 

Loss Reserves (AALR) 

The predictions from the final models have given rise 

to predicted RAALRM which we used to determine the 

Automated Actuarial Loss Reserves (AALR). These were 

multiplied with allocations proposed on Table 4. 

Afterwards these were summed to give Total Automated 

Actuarial Loss Reserves (AALR) for each machine 

learning model and the results obtained are presented on 

Table A2. Moreover, those results have been summarized 

in the Figure 3 below. 

 

Figure 3. Total Automated Actuarial Loss Reserves. 
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From the Figure 3 above the RANGER obtained the 

highest values for AALR Total reserves distributed across 

the policyholder categories which places it to be the best 

machine learning model too. 

 

5.6. Allocation of Automated Actuarial Loss 

Reserves in Policyholder categories 

Automated actuarial loss reserve allocation in 

policyholder categories using machine learning 

algorithms can offer several advantages over traditional 

methods. Machine learning algorithms can analyze large 

volumes of data more comprehensively and efficiently 

than traditional methods. This can lead to more accurate 

predictions of future loss reserves. By considering various 

factors simultaneously, such as policyholder 

demographics, historical claims data, and external 

variables, machine learning models can capture complex 

patterns and relationships that may not be apparent 

through manual analysis. Moreover, by categorizing 

policyholders into groups (e.g., categories A, B, C, and 

D), machine learning models can provide a more granular 

understanding of risk profiles. 

Each category can represent a different level of risk 

exposure based on various attributes such as age, location, 

policy type, and claims history. Machine learning 

algorithms can identify which factors are most predictive 

of future losses within each category. Machine learning 

models can adapt and learn from new data over time, 

allowing for dynamic adjustments to loss reserve 

allocations. As a result, the rationale for using machine 

learning algorithms in the allocation of automated 

actuarial loss reserves lies in their ability to provide more 

accurate, granular, and dynamic assessments of risk, 

leading to optimized resource allocation and improved 

decision-making in the insurance industry. The AALR 

allocations proposed on the Table 5 are presented on the 

plots below. 

The Figures 4, 5, 6, and 7 illustrates the distribution of 

Automated Actuarial Loss Reserves (AALR) across 

different reserve categories using the ANN algorithm. The 

data shows that the ANN algorithm allocates a significant 

portion of AALR to each reserve type, including Total 

IBNYR (Incurred But Not Yet Reported), Total RBNYS 

(Reported But Not Yet Settled), Total REOPENED, and 

Total REINSURANCE reserves. Across the policyholder 

reserving categories A, B, and C, the Total AALR IBNYR 

Reserves consistently represent the largest share, 

followed by Total AALR RBNYS, then Total AALR 

REOPENED, with AALR REINSURANCE being the 

least allocated. Policyholder Category A receives the 

largest allocation for each of the four main reserve types, 

followed by Category B, Category C, and Category D. 

The allocation patterns in the Figure 4 to Figure 7 reflect 

the substantial portion of AALR directed towards IBNYR 

reserves. This allocation addresses the bulk of unreported 

comprehensive claims, particularly from microfinance 

and car insurance policyholders, who constitute the 

largest segment. While RBNYS, REOPENED, and 

REINSURANCE reserves receive smaller allocations 

compared to IBNYR reserves, their presence across all 

policyholder categories plays a crucial role. They 

contribute to minimizing reinsurance costs, and facilitate 

effective catastrophic reserving and comprehensive claim 

settlements. The AI-driven real-time claim settlement 

process ensures minimal or zero delays in reporting and 

settlement, enhancing overall efficiency. 

 

Figure 4. AALR IBNYR. 

 

Figure 5. AALRR RBNYS. 
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Figure 6. AALR REOPENED. 

 

Figure 7. AALR REINSURANCE. 

 

5.7. Comprehensive Automated Actuarial Loss 

Reserves (CAALR) 

The CAALR are computed by summing the Total 

AALR distributed in the four main types of actuarial 

reserves presented in the Figure 8 in their respective 

categories with reference to each machine learning model 

used as indicated by system of equations presented on 

Equation (56). 

𝐶𝐴𝐴𝐿𝑅𝐴 = 𝐼𝐵𝑁𝑌𝑅𝐴 + 𝑅𝐵𝑁𝑌𝑆𝐴 + 𝑅𝐸𝑂𝑃𝐸𝑁𝐸𝐷𝐴 + 𝑅𝐸𝐼𝑁𝑆𝑈𝑅𝐴𝑁𝐶𝐸𝐴

𝐶𝐴𝐴𝐿𝑅𝐵 = 𝐼𝐵𝑁𝑌𝑅𝐵 + 𝑅𝐵𝑁𝑌𝑆𝐵 + 𝑅𝐸𝑂𝑃𝐸𝑁𝐸𝐷𝐵 + 𝑅𝐸𝐼𝑁𝑆𝑈𝑅𝐴𝑁𝐶𝐸𝐵

𝐶𝐴𝐴𝐿𝑅𝐶 = 𝐼𝐵𝑁𝑌𝑅𝐶 + 𝑅𝐵𝑁𝑌𝑆𝐶 + 𝑅𝐸𝑂𝑃𝐸𝑁𝐸𝐷𝐶 + 𝑅𝐸𝐼𝑁𝑆𝑈𝑅𝐴𝑁𝐶𝐸𝐶

𝐶𝐴𝐴𝐿𝑅𝐷 = 𝐼𝐵𝑁𝑌𝑅𝐷 + 𝑅𝐵𝑁𝑌𝑆𝐷 + 𝑅𝐸𝑂𝑃𝐸𝑁𝐸𝐷𝐷 + 𝑅𝐸𝐼𝑁𝑆𝑈𝑅𝐴𝑁𝐶𝐸𝐷

 (56) 

where A, B, C, D are policyholder categories 

respectively. 

The results in Table A7 are obtained and the Figure 8 

is generated. From the Figure 8 the RANGER algorithm 

maintained the highest peak for CAALR once again. 

 

Figure 8. Comprehensive automated actuarial loss reserves. 

 
5.8. Aggregate Comprehensive Automated 

Actuarial Loss Reserves (ACAALR) 

This was computed by summing all the 

Comprehensive Automated Actuarial Loss Reserves 

(CAALR) for each of the machine learning algorithms 

and came up with the Aggregate Comprehensive 

Automated Actuarial Loss Reserves (ACAALR) paying 

special attention to policyholder categories respectively. 

The immediate results for this are shown by summing 

Table A7 and got Table A8 which has been utilized to 

present the Figure 9. This is presented by system of 

equations (57). 

𝐴𝐶𝐴𝐴𝐿𝑅=𝐶𝐴𝐴𝐿𝑅𝐴 + 𝐶𝐴𝐴𝐿𝑅𝐵 + 𝐶𝐴𝐴𝐿𝑅𝐶

+ 𝐶𝐴𝐴𝐿𝑅𝐷 
(57) 

where 𝐴, 𝐵, 𝐶, 𝐷are policyholder categories 

respectively. 

The Figure 9 indicates clearly that the RANGER 

algorithms scooped the highest value for the ACAALR 

which still places it to remain the best model among the 

eight machine learning algorithms employed in the study. 
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Figure 9. Aggregate Comprehensive Automated Actuarial 

Loss Reserves contribution by each ML-method. 

 

5.9. Ultimate ratios for Comprehensive 

Automated Actuarial Loss Reserves 

These were calculated by obtaining the quotient 

between the respective machine learning CAALR by 

corresponding ACAALR the results were presented on 

the Table A9. The Figure 10 then compliments the results 

on Table A9. 

 

Figure 10. Ultimate ratios for CAALR by each ML-Method. 

The Figure 10 shows the computed allocation of 

reserves for each policyholder categories, which also 

aligns with the proposed policyholder loss reserve 

category allocations proposed and shown by Table 5 in 

the methodology section. 

 

5.10. The number of policyholders and their 

associated proportions 

The number of policyholders in their respective loss 

reserving categories is shown below respectively. The 

Table 12 shows the number of policyholders (which is 

also our sample size). 

Table 12. The number of policyholders and their 

associated proportions in the general insurance 

company. 
 

The number of policyholders and their associated proportions in the general insurance 

company 

Category Allocation Number of Policyholders 

A 50% 20,000.00 

B 30% 12,000.00 

C 20% 8,000.00 

D 0% 0.00 

Sample size 100% 40,000.00 

with regards to their policyholder categories and their 

estimated proportions also revealed by the ultimate ratios 

(50%) for Category A (Both policies), (30%) for Category 

B (Car Insurance policies) and lastly (20%) for Category 

C (Microfinance policies). These ultimate ratios were 

multiplied by the sample size to get respective policies 

which are fully in force. From Table 12 Category A 

carried many policyholders in force (20,000), followed by 

Category B (12,000) and finally the least being Category 

C (8,000). 

 

5.11. Distribution of Aggregate Comprehensive 

Automated Actuarial Loss Reserves by 

proportions of the policyholders in their 

categories 

The computed ACAALR were then distributed 

according to the proportions in Table 12 occupied by each 

policyholder category per each machine learning 

algorithm. When this is implemented, the results obtained 

are the Comprehensive Automated Actuarial Loss 

Reserves (CAALR) also presented on the Appendix 

section, see Table A7 which has been explicitly presented 

below as Table 13. 
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Table 13. Distribution of Aggregate Comprehensive 

Automated Actuarial Loss Reserves by proportions of the 

policyholders in their categories. 
Distribution of ACAALR into Policyholder Reserving categories 

ML Model 
Total 

ACAALLR 

Both policies 

Reserves 

Car Insurance policies 

Reserve 

Microfinance 

policiesReserve 

GLM 3,200,985.05 1,600,492.53 960,295.52 640,197.01 

GAM 3,195,537.58 1,597,768.79 958,661.27 639,107.52 

RPART 3,199,968.58 1,599,984.29 959,990.57 639,993.72 

RANGER 12,804,873.60 6,402,436.80 3,841,462.08 2,560,974.72 

XGB 3,200,773.63 1,600,386.82 960,232.09 640,154.73 

LAR 3,202,718.68 1,601,359.34 960,815.60 640,543.74 

SVM 1,674,997.35 837,498.68 502,499.21 334,999.47 

ANN 1,496,441.39 748,220.70 448,932.42 299,288.28 

The Table 13 presents the distribution of Aggregate 

Comprehensive Automated Actuarial Loss Reserves 

(ACAALR) across different machine learning (ML) 

models. It shows the total ACAALR and its allocation 

among three types of insurance policies: both policies 

combined, car insurance policies, and microfinance 

policies. RANGER shows the highest total ACAALR 

allocation at $12,804,873.60, significantly higher than 

other models. This suggests that the RANGER model 

estimates the highest overall loss reserves. SVM and ANN 

have the lowest total ACAALR allocations, 

$1,674,997.35 and $1,496,441.39, respectively. This 

indicates that these models estimate the lowest overall 

loss reserves. GLM, GAM, XGB, and LAR models 

exhibit similar distributions for the three types of reserves. 

Each of these models allocates about half of the total 

ACAALR to both policies combined, approximately one-

third to car insurance policies, and about one-sixth to 

microfinance policies. RANGER allocates a larger 

proportion to both policies combined ($6,402,436.80), 

with significant allocations to car insurance policies 

($3,841,462.08) and microfinance policies 

($2,560,974.72). This model suggests a larger focus on 

combined policies, possibly due to its extensive data 

handling. SVM and ANN models allocate a smaller total 

amount of ACAALR but with a relatively similar 

proportionate distribution across the three policy types. 

SVM allocates $837,498.68 to both policies combined, 

$502,499.21 to car insurance, and $334,999.47 to 

microfinance policies. ANN allocates $748,220.70 to 

both policies combined, $448,932.42 to car insurance, and 

$299,288.28 to microfinance policies. 

 

5.12. Assumptions for the Automated Actuarial 

Loss Reserving Model 

− The moment a policyholder takes the policy he/she 

receives the base bonus rates shown on the Table 

6. 

− The CAALRs are compounded over 𝑛 period of 

time to forecast their respective accumulated value 

using final bonus rates 

− 𝑛 can be number of days, number of weeks, 

number of months and or number of years, 

however in this study, 𝑛represents the number of 

years. 

− The number of comprehensive payments is greater 

than the number of comprehensive claims 

− The frequency, Severity and inflation rates are 

constant over 𝑛 

− The lapse rates are constant 

− The expenses and outgo are constant over 𝑛 

− Random Forest (RANGER) being the best model 

machine learning model in the study has been used 

for IFRS17 model compliance as well as model 

evaluation 

 

5.13. Model Evaluation based on the short-term 

and long-term periods 

Next, let us proceed to both test and validate the 

obtained automated actuarial loss reserves with regards to 

two major time-based scenarios indicated below on 

Equation (58). 

TBME = {
STP for Year 1, … ,10,
LTP otherwise.

 (58) 

where: 

− 𝑇𝐵𝑀𝐸-Time Based Model Evaluation 

− 𝑆𝑇𝑃-Short Term Period 

− 𝐿𝑇𝑃-Long-Term Period 

 

5.13.1. Short Term Policyholder category-based 

Loss Reserve based Model evaluation 

The Comprehensive Automated Actuarial Loss 

Reserves (CAALR) can be computed and predicted using 

the Net Present Value (NPV) and Accumulated Values 

(ACV) for the first 10 years, incorporating the Final 

Bonus rates (𝐹𝑏). 
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CAALR = NPV(𝐹𝑏 ,  Years = 1, … ,10)

 +ACV(𝐹𝑏 ,  Years = 1, … ,10)
 (59) 

where: 

− CAALR: Denotes the Comprehensive Automated 

Actuarial Loss Reserves. 

− NPV: Represents the Net Present Value. 

− ACV: Represents the Accumulated Values. 

− 𝐹𝑏: Denotes the Final Bonus rates. 

− Years = 1, …, 10: Specifies the period over which 

the calculations are made (the first 10 years). 

− Sum of NPV and ACV: Indicates that both Net 

Present Value and Accumulated Values are 

computed for the given period and combined to 

determine the CAALR. 

This notation assumes that both NPV and ACV are 

functions of the Final Bonus rates and the period 

considered. 

Table 14. Automated Actuarial Loss Reserve 

Model Evaluation for first 10 years. 
Automated Actuarial Loss Reserve Model Evaluation for first 10 years 

 Category A  Category B  Category C  

Year ACV NPV ACV NPV ACV NPV 

1 6,722,558.64 6,097,558.86 4,033,535.18 3,658,535.31 2,689,023.46 2,439,023.54 

2 7,058,686.57 5,807,198.91 4,235,211.94 3,484,319.35 2,823,474.63 2,322,879.56 

3 7,411,620.90 5,530,665.63 4,446,972.54 3,318,399.38 2,964,648.36 2,212,266.25 

4 7,782,201.95 5,267,300.60 4,669,321.17 3,160,380.36 3,112,880.78 2,106,920.24 

5 8,171,312.04 5,016,476.76 4,902,787.23 3,009,886.06 3,268,524.82 2,006,590.70 

6 8,579,877.65 4,777,596.92 5,147,926.59 2,866,558.15 3,431,951.06 1,911,038.77 

7 9,008,871.53 4,550,092.30 5,405,322.92 2,730,055.38 3,603,548.61 1,820,036.92 

8 9,459,315.10 4,333,421.24 5,675,589.06 2,600,052.74 3,783,726.04 1,733,368.50 

9 9,932,280.86 4,127,067.85 5,959,368.52 2,476,240.71 3,972,912.34 1,650,827.14 

10 10,428,894.90 3,930,540.81 6,257,336.94 2,358,324.48 4,171,557.96 1,572,216.32 

The Table 14 evaluates the performance of the 

Automated Actuarial Loss Reserve (AALR) models over 

the first 10 years for different policyholder categories, 

namely A, B, and C. It provides metrics for both 

Accumulated Values (ACV) and Net Present Value 

(NPV). 

With respect to Category A: the ACV increases 

steadily from $6,722,558.64 in Year 1 to $10,428,894.90 

in Year 10. The NPV starts at $6,097,558.86 in Year 1 and 

decreases to $3,930,540.81 in Year 10. ACV generally 

increases each year, reflecting the growth in accumulated 

reserves. NPV, however, decreases, indicating that the 

value of future reserves, when discounted to the present, 

is declining. With respect to Category B: ACV rises from 

$4,033,535.18 in Year 1 to $6,257,336.94 in Year 

10.NPV also starts at $3,658,535.31 and decreases to 

$2,358,324.48 by Year 10. Similar to Category A, ACV 

increases over time while NPV decreases, showing the 

growing value of reserves and a reduction in their present 

value. With respect to Category C: The ACV increases 

from $2,689,023.46 in Year 1 to $4,171,557.96 in Year 

10.NPV begins at $2,439,023.54 and decreases to 

$1,572,216.32 by Year 10. Both ACV and NPV follow 

the same trend as in Categories A and B, with increasing 

ACV and decreasing NPV over time. 

In all categories, the Accumulated Values grow over 

the 10-year period, indicating a consistent increase in 

reserves. The Net Present Value decreases across all 

categories, suggesting that while the total reserves are 

increasing, the present value of these future reserves 

diminishes over time due to discounting. Category A has 

the highest values for both ACV and NPV throughout the 

10 years, indicating it has the highest reserve amounts and 

present values. Category B follows, with Category C 

having the lowest values in comparison. This table 

provides insights into how the reserves are projected to 

evolve over time for different policyholder categories, 

highlighting differences in both the accumulated and 

present value of these reserves. 

 

5.13.2. Short Term Accumulated Values of 

Policyholder category-based Loss Reserves 

Figures 11, 12, and 13 shows that the accumulated 

values for CAALR are increasing exponentially for the 

first 10 years. This is a sign of financial strength to the 

insurer and it presents an opportunity for continued 

growth through comprehensive claim settlement within a 

short space of time. 

 

Figure 11. Predicted Short term ACV for CAALR FOR 

Category A. 
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Figure 12. Predicted Short term ACV for CAALR FOR 

Category B. 

 

Figure 13. Predicted Short term ACV for CAALR FOR 

Category C. 

 

5.13.3. Short Term Period (STP) model evaluation 

with regards to Net Present Values of 

Policyholder Reserves 

The STP model evaluation with regards to NPVs of 

policyholder reserves provides valuable insights into the 

financial implications of insurance policies in the short 

term, helping insurers make sound business decisions and 

manage their financial risks effectively. 

Figures 14, 15, and 16 shows that their net present 

values for CAALR are increasing slowly over the ten 

years. In addition to that, they are still positive and large 

as also shown by Table 14. This shows that in the short-

term period of time, the insurer is capable of meeting all 

future liabilities with claims included across all the three 

main policyholder categories. 

 

 

Figure 14. Predicted Short term NPV for CAALR for 

Category A. 

 

Figure 15. Predicted Short term NPV for CAALR for 

Category B. 

 

Figure 16. Predicted Short term NPV for CAALR for 

Category C. 

 

5.14. Long-Term Based Model Evaluation 

The Long-Term Period model evaluation is a method 

used in insurance and actuarial science to assess the 

adequacy of policyholder reserves over an extended 

period, typically spanning several years into the future. 

This evaluation is crucial for insurance companies to 
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ensure they have sufficient funds to meet their future 

obligations to policyholders. By evaluating the NPV of 

Policyholder Reserves within the Long-Term Period 

model framework, insurance companies can gain insights 

into their financial health, ensure they have adequate 

reserves to fulfill future obligations, and make informed 

decisions regarding pricing, underwriting, and investment 

strategies. Anytime beyond the first 10 years, has been 

regarded as long-term period, see Equation (58). 

Table 15 evaluates the performance of the Automated 

Actuarial Loss Reserve (AALR) model over a long-term 

period of 30 years for different policyholder categories, 

specifically A, B, and C. It provides the metrics for both 

Accumulated Values (ACV) and Net Present Value 

(NPV) over this extended time horizon. For each 

category, the table shows the ACV and NPV for each year 

from Year 11 to Year 30. The table spans from year 11 to 

year 30, covering the long-term evaluation period. 

Table 15. Long Term Based Automated Actuarial Loss 

Reserve Model Evaluation. 
Long Term Based Automated Actuarial Loss Reserve Model Evaluation 

 Category A Category B Category C 

Year ACV NPV ACV NPV ACV NPV 

11  10,950,339.65 3,743,372.20 6,570,203.79 2,246,023.32 4,380,135.86 1,497,348.88 

12 11,497,856.63 3,565,116.38 6,898,713.98 2,139,069.83 4,599,142.65 1,426,046.55 

13 12,072,749.46 3,395,348.93 7,243,649.68 2,037,209.36 4,829,099.78 1,358,139.57 

14 12,676,386.93 3,233,665.65 7,605,832.16 1,940,199.39 5,070,554.77 1,293,466.26 

15 13,310,206.28 3,079,681.57 7,986,123.77 1,847,808.94 5,324,082.51 1,231,872.63 

16 13,975,716.59 2,933,030.07 8,385,429.96 1,759,818.04 5,590,286.64 1,173,212.03 

17 14,674,502.42 2,793,361.97 8,804,701.45 1,676,017.18 5,869,800.97 1,117,344.79 

18 15,408,227.55 2,660,344.73 9,244,936.53 1,596,206.84 6,163,291.02 1,064,137.89 

19 16,178,638.92 2,533,661.65 9,707,183.35 1,520,196.99 6,471,455.57 1,013,464.66 

20 16,987,570.87 2,413,011.09 10,192,542.52 1,447,806.66 6,795,028.35 965,204.44 

21 17,836,949.41 2,298,105.80 10,702,169.65 1,378,863.48 7,134,779.76 919,242.32 

22 18,728,796.88 2,188,672.19 11,237,278.13 1,313,203.32 7,491,518.75 875,468.88 

23 19,665,236.73 2,084,449.71 11,799,142.04 1,250,669.83 7,866,094.69 833,779.88 

24 20,648,498.56 1,985,190.20 12,389,099.14 1,191,114.12 8,259,399.43 794,076.08 

25 21,680,923.49 1,890,657.33 13,008,554.09 1,134,394.40 8,672,369.40 756,262.93 

26 22,764,969.67 1,800,626.03 13,658,981.80 1,080,375.62 9,105,987.87 720,250.41 

27 23,903,218.15 1,714,881.93 14,341,930.89 1,028,929.16 9,561,287.26 685,952.77 

28 25,098,379.06 1,633,220.89 15,059,027.43 979,932.53 10,039,351.62 653,288.36 

29 26,353,298.01 1,555,448.47 15,811,978.81 933,269.08 10,541,319.20 622,179.39 

30 27,670,962.91 1,481,379.49 16,602,577.75 888,827.70 11,068,385.16 592,551.80 

With regards to Category A: ACV starts at 

$10,950,339.65 in Year 11 and increases to 

$27,670,962.91 by Year 30. This shows a steady rise in 

accumulated reserves over time. NPV begins at 

$3,743,372.20 in Year 11 and decreases to $1,481,379.49 

by Year 30. This decline indicates that while the total 

reserves are growing, their present value is decreasing due 

to discounting over time. ACV increases consistently, 

reflecting a growing reserve base. NPV decreases, 

showing the reduction in present value as time progresses. 

With regards to Category B: ACV rises from 

$6,570,203.79 in Year 11 to $16,602,577.75 in Year 

30.NPV starts at $2,246,023.32 and decreases to 

$888,827.70 by Year 30. Similar to Category A, ACV 

shows a steady increase while NPV shows a decreasing 

trend, indicating a growing reserve base but diminishing 

present value over time. With regards to Category C: 

ACV increases from $4,380,135.86 in Year 11 to 

$11,068,385.16 in Year 30. NPV starts at $1,497,348.88 

and declines to $592,551.80 by Year 30. ACV increases 

steadily, and NPV decreases, reflecting the same trends as 

seen in Categories A and B. 

Across all categories, the Accumulated Values 

increase year by year, indicating a steady accumulation of 

reserves over the long-term period. The Net Present Value 

decreases consistently across all categories, reflecting the 

diminishing present value of future reserves due to 

discounting over time. Category A shows the highest 

values for both ACV and NPV, indicating it has the largest 

reserve amounts and present values. Category B follows, 

with Category C having the lowest values in comparison. 

This table provides insights into the long-term projections 

of reserves for different policyholder categories, showing 

how the accumulated and present values evolve over an 

extended period. 

 

5.14.1. Long-Term Period model evaluation with 

regards to Accumulated Values of 

Policyholder Reserves 

The Long-Term Period (LTP) model evaluation with 

regards to Accumulated Values of Policyholder Reserves 

focuses on assessing the financial performance and 

stability of insurance policies over an extended period, 

typically spanning multiple years or even decades. 

In short, the Long-Term Period model evaluation with 

regards to Accumulated Values of Policyholder Reserves 

provides valuable insights into the long-term financial 

sustainability and viability of insurance policies, guiding 

insurers in making informed decisions and managing their 

risks effectively over time. 

This is complimented by the Figures presented below. 
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Figure 17. Predicted Long term ACV for CAALR for 

Category A. 

 

Figure 18. Predicted Long term ACV for CAALR for 

Category B. 

 

Figure 19. Predicted Long term ACV for CAALR for 

Category C. 

Figures 17, 18, and 19, shows that the accumulated 

values for policyholder reserves are trending upwards 

over the defined long periods of time. This shows that the 

insure still maintains both the capability and capacity to 

both underwrite and settle all comprehensive claims both 

in short and long periods of time. 

 

5.14.2. Long-Term Period model evaluation with 

regards to Net Present Values of 

Policyholder Reserves 

The Figures shown below compliments our results and 

our model. Figures 20, 21, and 22, shows that the net 

present values for policyholder reserves are falling slowly 

over the defined long periods of time. In short this, too 

compliments the insurer’s viability and competence to be 

capable of meeting all future, unseen and uncertain future 

liabilities with regards to both short and long periods of 

time. 

 

Figure 20. Predicted Long term NPV for CAALR for 

Category A. 

 

Figure 21. Predicted Long term NPV for CAALR for 

Category B. 
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Figure 22. Predicted Long term NPV for CAALR for 

Category C. 

 

5.15. Actuarial Science Based IFRS17 Analysis 

based on the Best Model:(Ranger) 

5.15.1. Visualizing Automated Actuarial Loss 

Reserves 

The Figure 23 histogram displays the frequency 

distribution of the Automated Actuarial Loss Reserves. 

Each bar represents the count of observations falling 

within specific ranges of loss reserves. 

 

Figure 23. Automated Actuarial Loss Reserves. 

IFRS 17 requires insurance companies to have 

accurate and transparent reserves. The Figure 23 shows 

that the automated actuarial solutions are providing 

realistic and robust estimates. Understanding the 

distribution of predicted reserves as presented in the 

Figure 21 helps in better risk management. In short, the 

Figure provides valuable insights into the predicted loss 

reserves and help evaluate the effectiveness of the AI-

driven model. They illustrate the distribution’s central 

tendency, variability, and any potential outliers, which are 

critical for ensuring that the actuarial models align with 

IFRS 17 requirements and effectively manage insurance 

risk. By interpreting these visualizations, actuaries and 

data scientists can assess and enhance their predictive 

models, leading to more accurate financial reporting and 

better risk management. 

 

5.16. Comparison Between the with Ranger based 

Automated Actuarial Loss Reserving Model 

and the Traditional Chain Ladder model 

The Figure 24 generally shows a graphical 

representation of the claim’s triangle data. This plot helps 

visualize the pattern of claims development. 

 
Figure 24. Plot of simulated claims triangle data. 

The Table 16 provides a comparison of loss reserve 

estimates from two different methods. RANGER AALR 

Method shows a significantly higher loss reserve estimate 

compared to the Chain Ladder Method. This might 

suggest that the RANGER AALR Method is more 

conservative or accounts for more uncertainty in future 

claims, potentially providing a more robust safety margin. 

Higher reserves can be advantageous in terms of ensuring 

that there are sufficient funds to cover future claims, 

reducing the risk of underestimating the required reserves. 

Table 16. Comparison of Loss Reserve Estimates. 

Method Loss Reserves 

Chain Ladder Method 164959820.82 

RANGER AALR Method 824152786.31 
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Figure 25. Comparison between Ranger based AALR and 

Chain ladder reserves. 

In risk management and insurance, having higher 

reserves as complimented by the Figure 25 can be 

indicative of a method that incorporates more 

comprehensive risk factors. The RANGER AALR 

Method’s higher reserve reflects its capacity to better 

account for potential variations and uncertainties in loss 

development, leading to more prudent financial 

management. 

 

5.17. Adherence of the Ranger model to IFRS17 

Regulations 

The Automated Actuarial Loss Reserves (ALR) are 

calculated by combining predictions for claim frequency 

(𝐹̂), claim severity (𝑆̂), and inflation (𝐼). Mathematically, 

this is expressed as: 

ALR = 𝐹̂ × 𝑆̂ × 𝐼 (60) 

where: 

− 𝐹̂ represents the predicted claim frequency, 

− 𝑆̂ denotes the predicted claim severity, 

− 𝐼 indicates the predicted inflation rate. 

Future cash flows (FCF) are projected by adjusting the 

loss reserves for expected inflation. The formula for future 

cash flows is: 

FCF = ALR × (1 + 𝐼) (61) 

To reflect the time value of money, future cash flows 

are discounted to their present value (PVFCF) using a 

discount rate (𝑟): 

PVFCF =
FCF

(1 + 𝑟)𝑡
 (62) 

where: 

− 𝑟 is the discount rate, 

− 𝑡 is the time period. 

The Contractual Service Margin (CSM) represents the 

unearned profit component of the insurance contracts. It 

is computed as: 

CSM = ALR − PVFCF (63) 

This equation captures the difference between the total 

estimated reserves and the discounted value of future cash 

flows, reflecting the profit yet to be recognized. 

The histogram of ALR presented by the Figure 26 

provides insight into the distribution of loss reserve 

estimates. A well-distributed histogram implies that the 

model accounts for a range of possible future claims, 

adhering to the IFRS 17 requirement for robust reserve 

estimates. The histogram of CSM denoted by the Figure 

27 shows the distribution of the unearned profit margins. 

A reasonable range of CSM values indicates proper 

recognition of profit margins, consistent with IFRS 17’s 

profit recognition requirements. The histogram of PVFCF 

presented by the Figure 28 illustrates the distribution of 

discounted cash flows. The application of discounting 

reflects compliance with IFRS 17’s requirements for the 

time value of money. 

 

Figure 26. Histogram of Automated Actuarial Loss Reserves. 
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Figure 27. Histogram of Contractual Service Margin (CSM). 

 

Figure 28. Histogram of Discounted Future Cash Flows 

(PVFCF). 

The developed metrics—Automated Actuarial Loss 

Reserves, Future Cash Flows, and Contractual Service 

Margin—along with their respective histograms, 

demonstrate adherence to IFRS 17 regulations. The 

mathematical expressions used ensure that the 

calculations align with the standard’s requirements for 

best estimates, profit recognition, and time value of 

money. 

 

5.18. Model Evaluation 

Model evaluation in the context of robust model 

testing, stress model testing, and scenario model testing 

involves assessing the performance and reliability of 

models under various conditions. Each type of testing 

addresses different aspects of the Ranger model 

performance, providing insights into how models behave 

under normal and extreme circumstances. 

 

5.18.1. Robust Model Testing 

Robust model testing evaluates how well a model 

performs under various perturbations and uncertainties 

and the primary aim is to assess the model’s stability and 

reliability when faced with minor changes in input data or 

model parameters. This type of testing ensures that the 

model’s predictions remain consistent and reliable despite 

small fluctuations in inputs or underlying assumptions 

[30], [31]. 

 

Figure 29. Robust model testing plot. 

The Figure 29 overlays the density curves of the 

original and perturbed Automated Actuarial Loss 

Reserves. The blue curve represents the original reserves, 

while the red curve represents perturbed reserves (small 

noise adjustments or stress testing). The nearly identical 

shape of both curves suggests that the model predictions 

are robust, even when the input data is perturbed. The 

smooth transition between the two indicates minimal 

sensitivity to perturbations, which is important for IFRS 

17 as it reflects stability under scenario testing and small 

changes in assumptions. On the same note the Figure 29 

shows a bar plot with error bars representing the mean 

reserve and standard deviation for both the original (blue) 

and perturbed (red) reserves. The similarity between the 

means and standard deviations further confirms the 

robustness of the model. A minimal shift between the 

original and perturbed data ensures that the model is 

stable, a key requirement under IFRS 17 for predictable 

loss reserving. Consistency between original and 

perturbed reserves reflects the reliability of the model in 
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managing different inputs, crucial for meeting IFRS 17’s 

requirement of fair value assessments. 

 

5.18.2. Stress Model Testing 

Stress model testing assesses how models perform 

under extreme conditions or when exposed to unusual but 

plausible scenarios and this testing is crucial for 

understanding the limits of a model and identifying 

potential vulnerabilities that could lead to failures under 

high-stress conditions [32], [33]. 

 

Figure 30. Stress model testing plot. 

The Figure 30 shows a box plot comparing Automated 

Actuarial Loss Reserves across various scenarios. The 

spread of each box plot reveals the variance in reserves 

under different shock scenarios. Despite changes in 

frequency, inflation, or severity, the distribution remains 

relatively stable. There are minimal extreme outliers, 

demonstrating that the model is resistant to abnormal 

shifts, further enhancing its robustness. Under IFRS 17, 

insurance companies are expected to assess future 

liabilities under varying economic conditions. The 

relatively stable median and spread across scenarios align 

with this by showing the model’s capability to handle 

fluctuating market and claim variables effectively. 

 

5.18.3. Scenario Model Testing 

Scenario model testing involves evaluating how a 

model performs across various hypothetical situations or 

future scenarios and this approach helps in understanding 

the model’s robustness and adaptability in response to 

different sets of assumptions or potential future 

developments [34], [35]. 

 

Figure 31. Scenario testing plot. 

The Figure 31 presents a stacked bar plot showing 

original (blue) vs. adjusted (red) Automated Actuarial 

Loss Reserves across 10 different scenarios. Across all 

scenarios, the adjusted reserves (red) consistently lie 

above or close to the original reserves (blue), indicating 

that the model provides a stable buffer for reserve 

adjustments. This demonstrates the model’s ability to 

adjust for future estimates, ensuring accurate loss 

reserving, a requirement of IFRS 17’s focus on contract 

service margins (CSM). On the same note, the Figure 31 

shows a line plot that shows the impact of different 

parameters (frequency, inflation, severity) on the adjusted 

values across scenarios. This plot visually highlights how 

different factors (frequency, inflation, severity) contribute 

to reserve adjustments across scenarios. The limited 

volatility suggests the model appropriately weights each 

parameter, ensuring robustness. Consistent adjustments 

are essential under IFRS 17 to reflect real-time changes in 

expected claims and liabilities. This graph demonstrates 

that the model adheres to this principle by providing 

reliable reserve estimates across varying conditions. 

The visualizations exhibited by the Figures 29, 30 and 

31 collectively demonstrate the robustness of the Ranger 

algorithm in estimating Automated Actuarial Loss 

Reserves. The stability under different perturbations, 

scenarios, and parameter adjustments ensures the model’s 

reliability. The model’s adherence to stable reserve 

estimations under various economic conditions and stress 

testing shows strong alignment with IFRS 17 

requirements, including transparency, predictability, and 

fair value assessments for insurance contracts 
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6. Discussion 

The integration of AI techniques into actuarial loss 

reserving represents a notable advancement in actuarial 

science, blending the strengths of data science with 

traditional actuarial practices. Our findings reveal that AI-

driven models, including neural networks and random 

forests, substantially outperform traditional actuarial 

methods in both accuracy and efficiency. This 

enhancement is particularly evident in the improved 

precision of loss reserve estimates and the reduced 

computational time required for model processing, which 

significantly streamlines the reserving process. 

The introduction of the Robust Automated Actuarial 

Loss Reserve Margin (RAALRM) marks a significant 

innovation in evaluating reserve adequacy. By 

incorporating both upper and lower bounds, the 

RAALRM offers a more nuanced view of reserve 

requirements. This approach not only addresses the 

limitations of traditional reserve margin calculations—

such as the lack of comprehensive variability 

assessment—but also provides a more robust framework 

for understanding potential fluctuations in loss reserves. 

The integration of the RAALRM with frequency, 

severity, and inflation models enhances the overall 

accuracy and reliability of actuarial forecasts.Our study 

also presents a novel policyholder-centric reserve 

allocation framework. By categorizing policyholders into 

distinct groups and tailoring reserve allocations based on 

these categories, the framework ensures that reserves are 

more accurately aligned with the actual risk profiles of 

policyholders. This tailored approach, coupled with the 

detailed bonus rate system, promotes fairness and 

optimizes the use of available reserves. The dynamic 

adjustment of bonus rates based on claims experience 

further refines the alignment of reserves with policyholder 

risk, enhancing the effectiveness of reserve management 

practices. 

Additionally, the methodology’s incorporation of 

qualitative insights from industry experts provides a well-

rounded perspective on the practical benefits and 

challenges of implementing AI-driven solutions in real-

world scenarios. These insights emphasize the importance 

of ongoing collaboration between actuaries and data 

scientists to maximize the potential of AI technologies in 

actuarial science. The rigorous validation techniques 

employed—such as robustness and stress testing, scenario 

analysis, and the comparison with traditional methods like 

the Chain Ladder model—underscore the comprehensive 

nature of the study. These techniques not only validate the 

performance and stability of AI-driven models but also 

ensure that the proposed solutions are resilient under 

various market conditions and stress scenarios. 

In a nutshell, this study highlights the transformative 

potential of AI in actuarial loss reserving. By bridging 

traditional actuarial methods with advanced machine 

learning techniques, it offers a forward-looking approach 

to managing and predicting loss reserves. The findings 

suggest that AI-driven models not only enhance 

predictive accuracy and efficiency but also provide a more 

detailed and adaptable framework for loss reserving in the 

insurance industry. Continued exploration and application 

of these methods will be crucial for advancing actuarial 

science and addressing the evolving needs of the industry. 

 

7. Conclusion 

This study significantly advances actuarial science by 

integrating AI into automated loss reserving, offering a 

more accurate, efficient, and adaptive alternative to 

traditional methods. The research’s primary contributions 

lie in the development of a comprehensive AI-driven 

framework that accurately models loss reserving through 

advanced techniques for frequency, severity, and inflation 

estimation. These innovations surpass the limitations of 

traditional actuarial methods, which often rely on 

historical trends and deterministic assumptions, by 

utilizing machine learning’s ability to capture complex 

relationships and adapt to new data patterns. 

The proposed framework aligns closely with IFRS 17 

standards, demonstrating not only its compliance with 

regulatory requirements but also its practical applicability 

for real-world implementation. Our study confirms that 

AI-driven models provide superior predictive accuracy, 

particularly in estimating reserves across diverse 

categories, and allow for a more detailed analysis of risk 

factors. This is validated through rigorous testing 

methodologies, including robustness checks, stress 

testing, and scenario analysis, ensuring the reliability and 

robustness of the model for use in the insurance industry. 
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7.1. Key findings of the study 

Enhanced Predictive Accuracy: The use of AI, 

particularly through the Random Forest (RANGER) 

algorithm, enables more precise estimations of loss 

reserves, capturing non-linear patterns in frequency, 

severity, and inflation data that traditional methods often 

overlook. 

Operational Efficiency: Automation of the reserving 

process reduces manual effort, speeds up decision-

making, and allows insurers to react more quickly to 

changes in market dynamics and regulatory demands. 

Comprehensive Reserve Adequacy: The introduction 

of the Robust Automated Actuarial Loss Reserve Margin 

(RAALRM) offers a more dynamic and flexible 

assessment of reserve adequacy, moving beyond the static 

calculations of traditional methods. 

Practical Application and Compliance: The model’s 

alignment with IFRS 17 underscores its readiness for 

practical application, ensuring compliance with modern 

accounting standards and providing a scalable solution for 

insurers. 

 

7.2. Future Research Directions 

Building upon the findings of this study, several 

potential areas for future research emerge: 

− Algorithm Development: Future studies could 

explore the integration of more advanced machine 

learning algorithms, such as deep learning models 

and ensemble techniques, to further improve 

predictive accuracy and capture complex 

dependencies within the data. 

− Use of Real-World Data: Implementing the model 

with real data from insurance companies would 

provide a more comprehensive validation of its 

accuracy and applicability. Collaborations with 

insurers could facilitate access to diverse datasets, 

enabling further refinement of the model’s 

predictive capabilities. 

− Exploration of Alternative AI Techniques: 

Research could investigate the potential of 

unsupervised learning methods, such as clustering 

and anomaly detection, to identify emerging 

patterns in claims data and detect early signs of 

changing risk dynamics. 

− Longitudinal and Multi-Period Analysis: 

Extending the model to perform multi-period 

reserving projections could offer insights into 

long-term reserve adequacy and help insurers 

anticipate future changes in reserve needs. 

 

7.3. Model Improvements and Broader 

Applications 

While the proposed model demonstrates considerable 

advantages, there are several areas where enhancements 

could be made: 

− Adaptation to Different Insurance Market 

Segments: Future research could tailor the AI-

driven framework to different lines of business 

within non-life insurance, such as health, property, 

or marine insurance. Each segment presents 

unique challenges, and modifying the model to 

account for distinct risk profiles could broaden its 

applicability. 

− Integration with Advanced Predictive Tools: 

Incorporating advanced tools like Bayesian 

networks for probabilistic reasoning or fuzzy logic 

systems to handle uncertainties could refine the 

model’s predictive accuracy further, particularly 

in environments with limited or highly variable 

data. 

− User-Friendly Interfaces and Implementation: 

Developing user-friendly interfaces and 

visualization tools for model outputs could make 

the AI-driven reserving approach more accessible 

to practitioners, promoting its adoption in the 

industry. 

− Dynamic and Adaptive Premium Pricing: The 

model could be adapted to inform premium pricing 

strategies dynamically, integrating real-time data 

for more responsive and accurate pricing 

adjustments that align with shifts in risk factors 

and market conditions. 

In a nutshell, this research demonstrates the 

transformative impact of AI-driven solutions on actuarial 

reserving practices, moving beyond the limitations of 

traditional methods to establish a more accurate, 

compliant, and dynamic framework. By bridging the gap 

between conventional actuarial techniques and advanced 

machine learning approaches, this study sets a new 
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benchmark in the field and provides a foundation for 

future innovation in non-life insurance. As insurers 

continue to face an evolving landscape of risks and 

regulatory expectations, the proposed AI-driven model 

offers a promising direction for achieving greater 

precision, efficiency, and adaptability in loss reserving. 
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Appendix A 

Table A1. Machine Learning Algorithms, Associated R 

packages and Hyper-parameters. 

Machine learning Algorithm 
R packages 

used 
Hyperparameters 

Generalized Linear Models (GLM) glm2 
family distribution: Gaussian, 

link function: Identity 

Generalized Additive Models 

(GAM) 
gam 

family distribution: Gaussian, 

link function: Identity 

Regression Trees (RPART) Rpart No hyperparameters used 

Random Forest (RANGER) Ranger 
number of trees:500, Mtry:8, 

Target node size: 5 

Extreme Gradient Boosting 

(XGB) 
Xgboost 

xgboost maximum depth: 3, 

number of rounds: 100 

Least Angle Regression (LAR) Caret Method:lars 

Support Vector Machines 

(SVMM) 
E10171 

SVM-Type: eps-

regression,SVM-Kernel: 

radial,cost: 1 

Artificial Neural Network (ANN) nnet 
Size:2, decay:5e-4, maximum 

iterations:200 

 

Table A2. AALR Total Reserves. 

Automated Actuarial Loss Reserving -Total Reserves 

ML Model IBNYR RBNYS REOPENED REINSURANCE 

GLM 2,560,788.00 480,147.80 128,039.40 32,009.85 

GAM 2,556,430.00 479,330.70 127,821.50 31,955.38 

RPART 2,559,975.00 479,995.20 127,998.70 31,999.68 

RANGER 10,243,899.00 1,920,731.00 512,194.90 128,048.70 

XGB 2,560,619.00 480,116.00 128,030.90 32,007.73 

LAR 2,562,175.00 480,407.80 128,108.70 32,027.18 

SVM 1,339,998.00 251,249.50 66,999.88 16,749.97 

ANN 1,197,153.00 224,466.30 59,857.67 14,964.42 

 

Table A3. AALR INBYR Reserves. 

Automated Actuarial Loss Reserving -Total IBNYR Reserves 

ML Model IBNYR-A IBNYR-B IBNYR-C IBNYR-D 

GLM 1,280,394.00 768,236.40 512,157.60 0.00 

GAM 1,278,215.00 766,929.00 511,286.00 0.00 

RPART 1,279,987.50 767,992.50 511,995.00 0.00 

RANGER 5,121,949.50 3,073,169.70 2,048,779.80 0.00 

XGB 1,280,309.50 768,185.70 512,123.80 0.00 

LAR 1,281,087.50 768,652.50 512,435.00 0.00 

SVM 669,999.00 401,999.40 267,999.60 0.00 

ANN 598,576.50 359,145.90 239,430.60 0.00 

 

Table A4. AALR RBNYS Reserves. 

Automated Actuarial Loss Reserving -Total RBNYS Reserves 

ML Model RBNYS-A RBNYS-B RBNYS-C RBNYS-D 

GLM 240,073.90 144,044.34 96,029.56 0.00 

GAM 239,665.35 143,799.21 95,866.14 0.00 

RPART 239,997.60 143,998.56 95,999.04 0.00 

RANGER 960,365.50 576,219.30 384,146.20 0.00 

XGB 240,058.00 144,034.80 96,023.20 0.00 

LAR 240,203.90 144,122.34 96,081.56 0.00 

SVM 125,624.75 75,374.85 50,249.90 0.00 

ANN 112,233.15 67,339.89 44,893.26 0.00 

 

 

 

 

 

Table A5. AALR REOPENED Reserves. 

Automated Actuarial Loss Reserving -Total REOPENED Reserves 

ML Model REOPENED-A REOPENED-B REOPENED-C REOPENED-D 

GLM 64,019.70 38,411.82 25,607.88 0.00 

GAM 63,910.75 38,346.45 25,564.30 0.00 

RPART 63,999.35 38,399.61 25,599.74 0.00 

RANGER 256,097.45 153,658.47 102,438.98 0.00 

XGB 64,015.45 38,409.27 25,606.18 0.00 

LAR 64,054.35 38,432.61 25,621.74 0.00 

SVM 33,499.94 20,099.96 13,399.98 0.00 

ANN 29,928.84 17,957.30 11,971.53 0.00 

 

Table A6. AALR REINSURANCE Reserves. 

 
Automated Actuarial Loss Reserving -Total REINSURANCE Reserves 

ML Model 
REINSURANCE-

A 

REINSURANCE-

B 

REINSURANCE-

C 
REINSURANCE-D 

GLM 16,004.93 9,602.96 6,401.97 0.00 

GAM 15,977.69 9,586.61 6,391.08 0.00 

RPART 15,999.84 9,599.90 6,399.94 0.00 

RANGER 64,024.35 38,414.61 25,609.74 0.00 

XGB 16,003.87 9,602.32 6,401.55 0.00 

LAR 16,013.59 9,608.15 6,405.44 0.00 

SVM 8,374.99 5,024.99 3,349.99 0.00 

ANN 7,482.21 4,489.33 2,992.88 0.00 

 

Table A7. AALR COMPREEHENSIVE Reserves. 

Automated 

ML Model 

Actuarial Loss 

CAALR-A 

Reserving -T 

CAALR-B 

otal COMPREHENSIVE Reserves 

CAALR-C CAALR-D 

GLM 1,600,492.53 960,295.52 640,197.01 0.00 

GAM 1,597,768.79 958,661.27 639,107.52 0.00 

RPART 1,599,984.29 959,990.57 639,993.72 0.00 

RANGER 6,402,436.80 3,841,462.08 2,560,974.72 0.00 

XGB 1,600,386.82 960,232.09 640,154.73 0.00 

LAR 1,601,359.34 960,815.60 640,543.74 0.00 

SVM 837,498.68 502,499.21 334,999.47 0.00 

ANN 748,220.70 448,932.42 299,288.28 0.00 

 

Table A8. AALR AGGREGATE Reserves. 
Actuarial Loss Reserving 

ML Model ACAALR 

GLM 3,200,985.05 

GAM 3,195,537.58 

RPART 3,199,968.58 

RANGER 12,804,873.60 

XGB 3,200,773.63 

LAR 3,202,718.68 

SVM 1,674,997.35 

ANN 1,496,441.39 

 

Table A9. ULTIMATE RATIOS FOR CAALR. 
Automated Actuarial Loss Reserving -Total Ultimate Ratios 

ML Model Category A Category B Category C Category D 

GLM 50% 30% 20% 0% 

GAM 50% 30% 20% 0% 

RPART 50% 30% 20% 0% 

RANGER 50% 30% 20% 0% 

XGB 50% 30% 20% 0% 

LAR 50% 30% 20% 0% 

SVM 50% 30% 20% 0% 

ANN 50% 30% 20% 0% 
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