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Abstract

This study introduces an Al-driven Automated Actuarial Loss Reserving Model (AALRM) designed to meet IFRS
17 standards for non-life insurance. The model leverages advanced machine learning techniques to improve accuracy,
efficiency, and adaptability in loss reserves, with a specific focus on inflation-adjusted frequency-severity modeling. A
unique aspect of this research is the integration of bancassurance services, enabling automated management for both
microfinance and car insurance on a unified platform. This includes a no-claims bonus system that categorizes
policyholders into four tiers—base, variable, final, and high-bonus—resulting in more precise risk assessments and
enhanced customer retention. Among eight evaluated machine learning algorithms, the Random Forest (RANGER)
outperformed others for estimating Aggregate Comprehensive Automated Actuarial Loss Reserves (ACAALR). The
model’s effectiveness was validated through stress tests, scenario analyses, and comparisons with traditional methods
like the Chain Ladder. Additionally, the study introduces a novel Robust Automated Actuarial Loss Reserve Margin
(RAALRM) with adaptive bounds, addressing traditional limitations in reserve margin calculations. This Al-integrated
approach significantly improves predictive accuracy, operational efficiency, and strategic decision-making, offering a
scalable solution for the insurance industry.
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1. Introduction precision, reduce operational costs, and improve decision-

. o making.

In the ever-evolving landscape of non-life insurance, &
the precision and efficiency of loss reserving are critical Loss reserving in non-life insurance involves
for maintaining financial stability and ensuring regulatory ~ estimating the amount of money an insurer needs to set
compliance. Traditional actuarial methods, while well-  aside to pay future claims. Traditionally, this process

established, face significant challenges in managing the  relies on actuarial methods such as chain-ladder models,
increasing complexity and volume of data. The advent of ~ frequency-severity ~models, and other statistical
artificial intelligence (AI) and data science offers  techniques [1]. However, these traditional methods can be
innovative solutions to these challenges, promising more ~ limited by their reliance on historical data and
accurate and automated loss reserving processes. This ~ assumptions that may not capture the complexities of
paper explores how actuarial data science-based Al ~ emerging risks and changing patterns.

solutions can revolutionize automated loss reserving in Actuarial data science introduces a new paradigm by

non-life insurance, highlighting their potential to enhance everaging advanced machine learning algorithms, big
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data analytics, and artificial intelligence to enhance the
accuracy and efficiency of loss reserving. Machine
learning models, such as neural networks and gradient
boosting machines, can process vast amounts of data,
identify intricate patterns, and make predictions with
higher accuracy than conventional methods [2]. By
incorporating Al, insurers can automate the reserving
process, reduce human error, and adapt more swiftly to
changing market conditions.

The rationale behind integrating Al solutions into
actuarial loss reserving stems from several key factors.
First, the volume and complexity of data in non-life
have grown exponentially, driven by
digitalization and the increasing availability of granular
data [3]. Traditional methods, often constrained by
manual processes and limited data handling capacity, may
struggle to keep pace with these changes.

Insurance

Second, the financial implications of inaccurate loss
reserving are substantial. Under-reserving can lead to
significant financial shortfalls, while over-reserving ties
up capital that could be used more productively. Al-based
solutions offer the potential to improve accuracy by
continuously learning from new data and adjusting
predictions accordingly, thus mitigating these risks.

In the realm of non-life insurance, the accurate
estimation of loss reserves is critical for ensuring financial
stability and regulatory compliance. Traditional actuarial
reserving methods, such as the Chain Ladder method,
Bornhuetter-Ferguson, and Cape Cod, have been the
cornerstone of the industry for decades. However, these
approaches face significant limitations in today’s complex
and rapidly changing risk landscape, characterized by
increased volatility, inflation, and diverse coverage needs
[4]. The deterministic nature of traditional models often
struggles to capture the intricate dynamics of emerging
risks, particularly when it comes to non-linear interactions
between multiple variables [5].

One of the primary challenges is the reliance on
aggregated data and simplistic assumptions about claim
development, which can lead to underestimation or
overestimation of reserves. Traditional methods often
assume that past data trends will persist, limiting their
responsiveness to evolving patterns, such as inflationary
pressures or changes in policyholder behavior. This lack
of flexibility in incorporating new information can result
in inaccurate reserve estimates, potentially leading to

insufficient capital adequacy or over-conservative

provisioning.

Furthermore, the manual and static nature of
conventional reserving techniques poses operational
inefficiencies and limits the ability to quickly adapt to
unexpected market changes or regulatory shifts. This is
especially problematic under the requirements of IFRS
17, which mandates a higher level of transparency,
accuracy, and forward-looking projections for reserves.
The limitations of traditional methods are particularly
evident in the areas of inflation adjustment, frequency-
severity analysis, and the estimation of reserve

uncertainty.

To address these challenges, this paper introduces an
Al-driven Automated Actuarial Loss Reserving Model
(AALRM) that leverages advanced machine learning
techniques to enhance predictive accuracy, operational
efficiency, and adaptability. By integrating inflation-
adjusted frequency-severity modeling, the proposed
approach offers a dynamic and data-rich framework
capable of learning from historical data and incorporating
real-time information to improve reserve estimates. This
Al-based solution not only surpasses the limitations of
traditional methods but also aligns with the evolving
regulatory landscape under IFRS 17, ensuring that
reserves are both adequate and adaptable to future
uncertainties.

1.1. Traditional actuarial loss reserving methods

In actuarial science, loss reserving methods are crucial
for estimating the reserves that an insurance company
needs to set aside to pay for future claims. These methods
are designed to predict the ultimate cost of claims based
on historical data and various statistical techniques. This
section describes some of the prominent loss reserving
methods, including their theoretical underpinnings,
algorithms, and practical implementations.

1.1.1.  Chain-Ladder Method

The Chain-Ladder method is one of the most widely
used techniques in actuarial science for loss reserving. It
relies on the assumption that the development of claims
over time follows a predictable pattern. The Chain-Ladder
method assumes that the ratio of development factors (i.e.,
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the ratios of cumulative claims between successive
periods) is constant across different accident years. The
chain ladder model is a popular method used in actuarial
science for predicting future claims based on past data.
The model assumes that the development of claims over
time follows a certain pattern that can be extrapolated to
estimate future claims. The basic structure of the chain
ladder is presented by Table 1.

Table 1. Structure of the Basic Chain Ladder Model.

Accident Development Development Development
Year Lag1 Lag 2 Lag n
Year 1 Ci Ci2 Cin
Year 2 Cz1 Cap Con-1
Year m Cina Cinz Cnn-—m+1

Let C;; represent the cumulative claims reported in

Accident Year i at Development Lag j. The chain ladder
model assumes that the development of claims follows a
pattern that can be described by the development factors.

The development factors are calculated as:
m—j
Yi=1 Cij+1
m—j
Yizy Cij

where f; is the development factor for lag j.

fi = , forj=12,..,n—1. (1)

To project future claims, we use the development
factors. For a given accident year i and development lag
Jj, the projected claim CA'L j can be calculated as:

Cij = Cij-1" fj-v

where CAi‘ j 1s the projected cumulative claim for

forj > 1. Q)

Accident Year i at Development Lag j.

The total claims for Accident Year i, denoted T}, is the
sum of the projected claims across all development lags:

n
- =Zé

j=1

j (3)

o~

where T} is the total projected claims for Accident Year

The development factor f; can be used to project future

claims for any development lag j, given the claims from
the previous lag.

Algorithm 1 Chain-Ladder Method

Input: Cumulative claims data matrix €

Output: Reserves for each accident year Compute
development factors f; from €

for each accident year i do

Estimate reserve R; using R; = C;o - [[[21 fj — Cim

end for=0

Proof- To prove this, consider the claims for Accident
Year i at Development Lag j, denoted C; ;. For the next

development lag j + 1, the claims are given by:

Cij - f- 4)

Given that the development factor f; is calculated as

Cij+1 =

the ratio of the total claims in lag j + 1 to lag j across all
accident years, it can be shown that:

i
_ Zi:lj Ci,j+1
fi =<7, ®)
Yizy Cij
This ensures that:
m—j
é..l—C...M 6)
iL,j+1 — Yij m—j
Lizy Cij
Therefore, (fl-, j+1 1s a valid projection for future

claims.

The total projected claims T; for Accident Year i is the
sum of the projected claims across all development lags
as presented by Equation (3).

The total claims for Accident Year i can be expressed as:

-1

i Gy | | fe ™

j=1 1

~.

=
Il

Proof. To derive this result, we use the fact that the
projected claims CA’L ; for lag j are given by:

j-1
Cij=Cia- nfk- ®)
k=1

Thus, the total projected claims for Accident Year i is:
n Jj-
= [ 0
j:l k=1

Simplifying the summation using the properties of the
development factors leads to:
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n-1 J

SST)

j=1 k=1

Ty =Ciy -

Hence, the total claims can be expressed in terms of
C; 1 and the development factors fj as shown in Equation

(8).

1.1.2.

The Bornhuetter-Ferguson (BF) Method combines the
Chain-Ladder method with prior assumptions about the
ultimate claims.

Bornhuetter-Ferguson Method

Let C; be the estimated ultimate claims for the i-th
accident year. The BF method incorporates an a priori
estimate of ultimate claims y; and adjusts it with the
observed development. The reserve R; is estimated as:

Ri=pi—Cin (11

where y; is usually obtained from external benchmarks
or prior models.

Algorithm 2 Bornhuetter-Ferguson Reserving Method

Input: Cumulative claims C;; where i indexes the
accident year and j indexes the development year; Prior
estimates u; representing the expected ultimate claims for
each accident year.

Step 1: Determine the development factor f;; for each

development year j based on historical data. These factors
are used to project future claims.

Step 2: Calculate the ultimate claims C; for each accident
year i using the following equation:

G = z Cij fij (12)
]

where f;; is the development factor for the j-th
development year applied to the i-th accident year.

Step 3: Apply the Bornhuetter-Ferguson reserve estimate
for each accident year i using:
ti — 25 Cyj

R. =
L T[i

(13)
where:

e u; is the prior estimate of the ultimate claims for
accident year i,

e Y C;j is the cumulative claims reported to date
for accident year i,

e ; is the proportion of claims reported to date
(based on development factors or other
methods).

Output: Estimated reserves R; for each accident year i.

1.1.3.  Mack Model

The Mack Model is a widely used statistical method
for estimating reserves in insurance claim reserving. It is
based on the development of claims over time and
provides both point estimates and measures of
uncertainty. The model assumes a specific structure for
the development of claims and leverages this structure to
make predictions about future claims.
Let C;; represent the cumulative claims reported by
development year j for accident year i. The Mack Model
assumes that these cumulative claims evolve according to
development factors f;, which are estimated from

historical data.

For each accident year i, the cumulative claims C;; are
related to the claims of previous years by a development
factor f;. The relationship can be expressed as:

Cij+1=Cij - fj (14)
where f; is the development factor for the j-th

development year.

The ultimate claims C; for accident year i are estimated
by projecting the cumulative claims to their final value
using the development factors:

Ci=Cafr for fima 1s
where m is the total number of development years
available.

The reserve R; for accident year i is calculated as the
difference between the ultimate claims and the cumulative
claims reported to date:

R; = —ZCU (16)
7

The variance of the reserves Var(R;) can be computed
by accounting for the variance in the cumulative claims:

Var(R;) = Z <g§ ) Var(CU) 17)

j
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where Var(Cij) is the variance of the cumulative
. aR; e
claims Cjj, and ac-L- denotes the sensitivity of the reserve
Y

R; with respect to C;;.

The development factors f; are estimated by solving
the following least-squares problem:

. 2
min § (Cijsr—Cij - i) (18)
J —
L]

Proposition 1: Under the assumptions of the Mack
Model, the reserve estimator R; is an unbiased estimator
of the ultimate claim amount minus the reported claims.

Proof:

To establish the unbiasedness of the reserve estimator
R;, we leverage the linearity of expectation and the
properties of unbiased estimators.

Let C; denote the estimator of the ultimate claim
amount for the ith cohort. According to the Mack Model,
the reserve R; is defined as:

R =C— Z Cij (19)
J

where Y’ ; C;; represents the total reported claims up to

development period j. Our goal is to demonstrate that R;
is an unbiased estimator of the ultimate claim amount
minus the reported claims.

Linearity of Expectation: By the linearity of

expectation, we have:

E[R;] = E|C; — z Cij (20)
j

This can be decomposed as:

E[R;] = E[C]] - E Z Cij Q1)
J
Unbiased Estimation of Ultimate Claims: Under the
Mack Model assumptions, the estimator ; is an unbiased
estimator of the ultimate claim amount C for the ith
cohort. Therefore:

E[C;] =cY (22)

Expected Value of Reported Claims: The expected
value of the total reported claims up to development
period j is given by:

E [Z 64 = Z E|[C;] 23)

Given that C;; represents the claims reported by the jth
development period, and IE[Ci j] is precisely the
cumulative claims reported up to period j, the expectation
aligns with the reported claims up to that period.

Combining Results: Substituting these results into
our earlier expression:

E[R;] = E[(;] - Z E [Cyj] (24)

j
Since E[¢;] = ¢V Ci]l=3C in:
ince [Cl] = (C; and IE[ZJ CU] = ,; Cij, we obtain:
E[R;] = ¢/ —Z Cij ©5)

j

Conclusion: R; is an unbiased estimator of the
ultimate claim amount minus the reported claims,
completing the proof.

Lemma 1: The variance of the reserve estimator R; is
derived from the variances of the reported claims and the
development factors.

Proof: By applying the propagation of variance
formula, we obtain:

oR;\’
Var(R;) = Z <ac-l.> Var(C;;) (26)
- ij

J

The Mack Model provides a robust framework for
estimating reserves and quantifying uncertainty in
insurance claim reserving. Through the use of
development factors and variance calculations, it offers a
systematic approach to predicting future claims and

managing risk.

Algorithm 3 Mack Model for Claim Reserving

Input: Cumulative claims C;;, where i denotes the

ij>
accident year and j denotes the development year.

Step 1: Estimate the development factors f; and the

associated variances Var(f j) for each development year j
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using the method of least squares or other suitable statistical
techniques.

Step 2: Compute the ultimate claims C; for each accident
year i using the development factors:

éi =Ch f1 f2 fm-1 27

where m is the number of development years available
for the accident year i, and f; represents the development

factor for the j-th development year.

Step 3: Calculate the reserves R; for each accident year i

Ri=C - Z Cij (28)

where }}; Cy; is the cumulative claims reported to date for

as:

accident year i.

Step 4: Estimate the variance of the reserves Var(R;) for
each accident year i using the following formula:

oR;\*
Var(Ri) = Z (acl> Var(Cij) (29)
j Y

where Var(C ,-]-) represents the variance of the cumulative

. OR; . . _— .
claims C;j and # is the partial derivative of R; with respect
ij
to CU

Output: Estimated reserves R; and their associated
variances Var(R;) for each accident year i.

1.1.4.  Generalized Linear Models (GLM)

Loss reserving is a crucial task in actuarial science,
used to estimate the future claims payments that an insurer
expects to make. Generalized Linear Models (GLMs)
provide a flexible framework for modeling these claims,
offering both statistical and practical advantages.

Model (GLM)
traditional linear models to handle response variables that

A Generalized Linear extends

follow distributions other than the normal distribution.
Formally, a GLM consists of three components:

1. Random Component: The response variable Y;
is assumed to follow a probability distribution
from the exponential family. This includes
distributions such as normal, binomial, Poisson,
and gamma.

2. Systematic Component: The predictors (or
explanatory variables) are combined linearly to
form a linear predictor. If X; denotes the vector of
predictors for observation i, then the linear
predictor is given by:

— T
ni =x; B,
where f3 is a vector of coefficients to be
estimated.

3.  Link Function: The link function g(-) connects
the mean of the response variable y; to the linear
predictor. Specifically,

9 = ;.
In the context of loss reserving, the response variable
Y; typically represents the number of incurred losses or
claims. The systematic component might include factors
such as development years, policyholder characteristics,
and exposure measures.

The GLM for loss reserving is often specified using the
following steps:

Consider a GLM where the response variable Y;
follows a Gamma distribution, which is common for
modeling loss amounts due to its flexibility in handling
skewed distributions. The probability density function of
the Gamma distribution is:

a-1,-yi/B

0 frd —l
f(yl'a'ﬁ) ﬁal—v(a)
where a and [ are shape and scale parameters,
respectively.

The link function for the Gamma distribution is often
the reciprocal link:

1
g(w) = .U_z
where u; is the mean of the response variable. Thus,
1
ni = E
The systematic component is given by:
= x{ B
The parameters f3 are estimated by maximizing the log-

likelihood function. For the Gamma distribution, the log-
likelihood function is:
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n

L(B) = Z [alogﬁ —logl'(a) + (@ — 1)logy; —% :
i=1
For a GLM with a Gamma distribution, the maximum
likelihood estimator (MLE) of the parameter vector f is

consistent and asymptotically normal.

Proof. The consistency of the MLE follows from the
fact that the log-likelihood function is concave and the
Fisher information matrix is positive definite. The
asymptotic normality can be derived using the standard
results from the theory of M-estimators. O

The variance of the parameter estimates J is given by:
Var(B) = [XTWX] 7,

: . . o
where W is a diagonal matrix with elements w; = °h,

on;
Var(Y;).

The estimated reserves can be calculated as the
expected value of the response variable given the
predictors, i.e.,

A~

Ry = [,
where fi; is the fitted value from the GLM.
Assuming the relationship between the claim amount
Y; and the covariates X; is correctly specified within the
Generalized Linear Model (GLM) framework, the GLM

provides asymptotically efficient estimates for the reserve
parameters.

Proof. Consider a Generalized Linear Model (GLM)
where the response variable Y; follows an exponential
family distribution with probability density function (pdf)
given by:

yi6; — b(6;)
¢

where 8; denotes the natural parameter, ¢ is the
dispersion parameter, b(-) is the cumulant function, and

f(yi; 91'1 ¢) = €exp + C(yi' ¢) ’

c(+) is a function of the dispersion parameter ¢.

Suppose the relationship between 6; and the covariates
x; is specified through a link function g(-) such that:

g = 6;,
where u; = E[Y;] represents the mean of the response
variable.

The log-likelihood function for the parameter vector 3
in the GLM is:

- (v:6: — b(6;
LBy, X) = Z <YTN +c(yi, ¢)>-
i1

Algorithm 4 Generalized Linear Models (GLM)
Method for Loss Reserving

Input: Claims data Y = {¥;}[-,, covariates X = {X;}7-{
Output: Estimated reserves R
Fit the Generalized Linear Model (GLM) to the data

Step 1: Specify the GLM with a link function g(-) and a
probability distribution from the exponential family. Let u;
denote the predicted mean of the i-th claim, where

gu) = XiB (30)

Here, X; is the vector of covariates for the i-th claim, and

B represents the vector of parameters to be estimated.

Step 2: Estimate the parameters by maximizing the
log-likelihood function:

(€2))

n
B = argmax [Z (% 1%, B)
=
where €(Y; | X;, B) denotes the log-likelihood function
of the i-th claim given the covariates and model parameters.

Step 3: For each claim i, predict the expected mean Ji;

using the fitted model parameters f:

A = g7 (X:B) (32)
Here, g~1(-) is the inverse of the link function.

Step 4: Estimate the reserve R as the sum of the predicted

n
R=>i (33)
i=1

claims:

Under regularity conditions, including the correct
specification of the link function and the distribution, the
maximum likelihood estimates B possess the following
properties:

1.  **Consistency**: As the sample size n
approaches infinity, 3 converges in probability
to the true parameter value *.

2. **Asymptotic Efficiency**: The covariance
matrix of B can be approximated by:
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~ =111
var(B) ~ [XTV(B) x|
where V(G) represents the variance-covariance
matrix of the observations, which depends on X
and p.

Additionally, the efficient score function is given
by:

0L(B;y, X
IO

The Fisher Information matrix I(B) is defined as:

_ _[0*£By.X)
I(B) =-E [O—BZ]'

and the Cramér-Rao lower bound asserts that:

Var(B) = [1(8)1 ™.

Thus, under the correct model specification with an
appropriate link function and distribution, the GLM
achieves the Cramér-Rao lower bound, demonstrating its
asymptotic efficiency.

Consequently, if the model is correctly specified with
the appropriate link function and distribution, Generalized
Linear Models provide efficient and consistent estimates
of the reserves.

Generalized Linear Models offer a robust and flexible
approach to loss reserving. By appropriately specifying
the random component, systematic component, and link
function, actuaries can effectively model and estimate
future claims. The mathematical properties of GLMs
ensure that the parameter estimates are reliable and that
the model can be used to make informed predictions about
future losses.

1.2. Structure and theory of Machine learning
towards Actuarial Loss Reserving using the
Inflation Adjusted Frequency Severity
Approach

Actuarial loss reserving is crucial in insurance for
estimating the amount needed to cover future claims.
Traditional methods often rely on deterministic models
that may not fully capture the complex patterns in data.
Machine learning offers a modern approach to enhance
the accuracy of these estimates. In particular, the
inflation-adjusted

frequency-severity — approach is

employed to account for economic inflation in both the
frequency and severity of claims.

1.2.1. Mathematical foundation

The inflation-adjusted frequency-severity approach
integrates inflation adjustments into the traditional
frequency-severity model. This approach is structured as
follows:

3. Frequency Model: This model estimates the
number of claims per unit of exposure.

4.  Severity Model: This model estimates the cost
per claim.

5. Inflation Adjustment: This adjusts both
frequency and severity models for economic
inflation.

Let N; be the number of claims at time t, and S; be the
severity of each claim. The inflation-adjusted frequency-

severity approach involves the following steps:

Define the observed frequency F(t) and severity S(t) as:

N
F(t) =— 34
®) L, (34)
Total Cost
S(t) = N (35)
t

where E, is the exposure at time ¢, and Total Cost is
the sum of all claims’ costs.

To adjust for inflation, we use an inflation factor I(t),
which reflects the change in price level over time. The
inflation-adjusted frequency Fyqi(t) and severity S,q;(t)

are:

Faq(t) = e
E.-1(t) (36)
Sagj(t) = Total Cos 37

N - 1(t)

The total reserve R required is then:
T
R = z Fagj (8) - Saq;(©) - E¢ (38)
t=1

1.2.2.  Machine Learning Integration

Machine learning models, such as regression trees,
neural networks, or ensemble methods, can be used to
predict F(t) and S(t) based on historical data and other
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covariates. These models account for complex
relationships and interactions that traditional methods
might miss. Here, we outline a pseudo algorithm for
integrating machine learning with the inflation-adjusted
frequency-severity approach.

Let R denote the inflation-adjusted total reserve. We
claim that R is an unbiased estimator of the future claims
reserve R*, given the assumption of stationary inflation.

Proposition: Under the assumption of accurate

inflation adjustments and stationary inflation, the

estimator R satisfies:
E[R] =
where E[-] denotes the expectation operator.
Proof:

Consider the reserve R computed as:
m
R=>"F(X)-S(X,
i=1

where F(X;) and S(X;) are the inflation-adjusted
frequency and severity estimates, respectively. The

adjustment for inflation is performed by:

- CPI
J ( Xi) F ( X. ) CPCI:rrent
ase
S(X) —S(X) CPclurrent
base

Under the assumption of stationary inflation, the
CPIcurrent
Cp Ipase
is constant across the dataset. Thus, we can factor it out of

the summation:

Consumer Price Index (CPI) adjustment factor

CPI current Z
R=—"% F(X)-S(X)
CPIbase =1

Let R be the reserve computed without inflation

SDACORICD
i=1

Since F(X;) and $(X;) are unbiased estimators of the
true frequencies f*(X;) and s*(X;)
respectively, we have:

adjustment:

severities

E[F(X)] = F* (X))

E[S(X)] = s* (X))

Thus, the expectation of R is:

= > E[FOO] - E[S(D] = ) £ () 5" (X))
i=1 i=1
= R*

Consequently, the expectation of R is:

CPIcurrent IE[R] — CPICurrent .R* = R*
CPIbase CPIbase

Therefore, R is an unbiased estimator of the future
claims reserve R*, as required.

E[R] =

Lemma: Consider a given time period t. The inflation-
adjusted frequency E[Fadj(t)] and severity E[Sadj(t)] can
be expressed as follows:

E[N
IE[Fadj (t)] = % (39)
E[Saqi(6)] = Etfota’ Post] D;\Zt,a} ((ig)sﬂ (40)

Proof:

Let N; denote the number of claims in time period t,
and Total Cost represent the aggregate cost of all claims
in time period t. Let E; denote the exposure or relevant
metric for normalization, and I(t) denote the inflation
adjustment factor at time .

1.Inflation-Adjusted Frequency:
The inflation-adjusted frequency IE[Fadj(t)] is given
by:

Number of Claims

]E F . = .
[Fagi ®)] Exposure x Inflation Factor

By definition, the number of claims N, is the raw
frequency, and it needs to be adjusted for exposure E; and
inflation I(t). Therefore:

N

E[Foqi(®)] = E 10D

This relationship aligns with the expectation of the
adjusted frequency when accounting for exposure and
inflation.

2. Inflation-Adjusted Severity:

The inflation-adjusted severity IE[Sadj(t)] is given by:
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Total Cost
Number of Claims X Inflation Factor

IIE':[Sadj (t)] =

The total cost represents the aggregate severity before
adjustment. To obtain the adjusted severity, we normalize
by the number of claims N; and adjust for inflation I(t).
Thus:

E[Total Cost]
Nl‘f * I(t)

Since both expressions are derived directly from the
definitions of frequency and severity adjustments,
accounting for inflation and exposure, they follow directly
from the properties of expectation and the inflation
adjustment mechanism.

]E[Sadj (t)] =

Algorithm 5 Inflation-Adjusted Frequency-Severity
Reserve Estimation

Procedure ESTIMATE RESERVE (Data, InflationData)
Initialize a machine learning model M

Split Data = {(X;,¥;)}i=; into training set D rqin and
testing set Dyt

Train the frequency model f(X) = f*(X) on Dirain
Train the severity model $(X) = s*(X) on Dypain

Predict frequencies F(X) = {f(X;)}; and severities
E(X) = {8(Xi)}iZ1 using Dy

Adjust predictions for inflation using InflationData:

CPIcurrent

F(Xi) = ?(Xi) ) CPIb
ase

- - CPI
S(Xi) _ S(Xi) . current
CPIbase

Compute the reserve R using adjusted frequencies and
severities:

R = F(Xi)'s'(xi)
2

Return Reserve R

end procedure=0

Machine learning models integrated with inflation-
adjusted frequency-severity approaches offer a powerful
tool for actuarial loss reserving. By leveraging advanced
algorithms, we can better account for complex patterns in
claims data and provide more accurate reserve estimates.

1.3. The Novelty of IFRS17 in Non-Life
Insurance related to Actuarial Loss
Reserving

IFRS 17, officially known as International Financial
Reporting Standard 17, is a global accounting standard
developed by the International Accounting Standards
Board (IASB) to regulate the recognition, measurement,
presentation, and disclosure of insurance contracts. This
standard, which replaced IFRS 4, was implemented on
January 1, 2023, with the aim of providing a more
consistent and transparent view of the financial position
and performance of insurance companies.

IFRS 17 introduces significant changes to the way
insurers, including non-life
recognize and report their financial performance,
specifically in terms of actuarial loss reserving. The
novelty of IFRS 17 lies in its requirement for a more
granular, transparent, and risk-sensitive approach to
reserving compared to earlier standards. Under IFRS 17,

insurance companies,

insurers must measure insurance contracts at a more
detailed level, typically on a contract-by-contract basis or
in groups of contracts with similar characteristics [6].

IFRS 17 introduces the concept of discounting cash
flows in the calculation of insurance liabilities. This
means that reserves now reflect the time value of money,
ensuring a more accurate estimate of future reserves as
illustrated in this paper. Additionally, IFRS 17 requires a
risk adjustment for non-financial risks, which adjusts
reserves to reflect the uncertainty around insurance
obligations [7] which is also presented in this paper. The
introduction of the Contract Service Margin (CSM)
represents a key innovation in IFRS 17. It defers the
recognition of profits to match the delivery of insurance
services, ensuring that insurers only recognize earnings as
they provide coverage this is too presented in this study

[8].

IFRS 17 aligns actuarial reserving more closely with
economic reality and regulatory frameworks such as
Solvency II. Both frameworks require the use of market-
consistent assumptions and forward-looking estimates.
For actuarial professionals, this alignment leads to
enhanced consistency between financial reporting and
risk management practices, demanding more advanced
actuarial techniques for reserve estimation [9]. The new
standard enhances transparency by requiring more
detailed disclosures about the assumptions and methods
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used in reserving calculations. This enables stakeholders,
including regulators and investors, to better assess the
financial health of insurers. As a result, actuarial loss
reserving must now accommodate more comprehensive
reporting requirements, making the process more robust
and transparent.

In closing, IFRS 17 brings a sophisticated and risk-
sensitive approach to actuarial loss reserving in non-life
insurance. Its focus on discounted cash flows, risk
adjustments, and transparency represents a significant
shift from previous standards, ensuring that loss reserves
are both more reflective of underlying risks and aligned
with modern regulatory and market expectations, and this
has been presented in this paper too.

1.4. Novelty of the study

This study uniquely combines classical actuarial
techniques with advanced Al algorithms, such as neural
networks and random forests, to enhance the accuracy and
efficiency of loss reserving. By integrating these
methodologies, the study provides a pioneering approach
that bridges traditional actuarial practices with modern
data science innovations. The creation of automated
models for frequency, severity, and inflation, which are
key components of actuarial loss reserving, represents a
novel advancement. These models utilize machine
learning techniques to predict and aggregate reserve
estimates, offering a dynamic and automated approach to
actuarial forecasting. The study introduces the concept of
RAALRM, a new metric designed to provide a robust
measure of actuarial loss reserves. This approach
integrates upper and lower reserve estimates to offer a
more comprehensive and reliable evaluation of reserve
adequacy, representing a significant innovation in reserve
margin calculations. The methodology proposes a novel
framework for distributing reserves across different
policyholder categories. By customizing reserve
allocations based on policyholder types and their specific
risk profiles, the study enhances the precision and fairness
of reserve distribution. The study introduces a detailed
bonus rate system for policyholder categories, reflecting
variations in claims experience and risk. This system
provides a refined approach to adjusting reserves based on
actual claims data, contributing to more accurate reserve
estimates.

The study pioneers the integration of advanced Al
techniques, specifically Random Forest models, into
actuarial loss reserving. By comparing these Al-driven
models with traditional actuarial methods, the study not
only highlights the superior predictive performance of Al
but also sets a new standard for incorporating machine
learning into actuarial practice. The development of a
comprehensive framework that separately models
frequency, severity, and inflation represents a significant
innovation. Each component model is tailored to predict
specific aspects of loss reserves, allowing for more
granular and accurate forecasting compared to traditional
methods that often use aggregated or less detailed
approaches. The study’s use of robustness and stress
testing, including perturbations and scenario analysis,
represents a cutting-edge approach to validating the
stability and resilience of actuarial models. This rigorous
testing ensures that the models are robust under varying
conditions and provides a deeper understanding of their
performance in uncertain environments.

Explicitly incorporating IFRS 17 requirements into the
Al-driven models, including the calculation of
Contractual Service Margin (CSM) and Present Value of
Future Cash Flows (PVFCF), ensures that the proposed
models are aligned with contemporary regulatory
standards. This integration addresses a critical need for
compliance and sets a precedent for future research and

practice in actuarial science.

1.5. Contribution to Actuarial Science

By integrating Al-driven models with traditional
actuarial methods, this
advancement of actuarial science through improved

study contributes to the

accuracy and efficiency in loss reserving. The use of
machine learning algorithms allows for more precise
predictions and optimizes the reserve estimation process.
The development of automated actuarial models and the
RAALRM metric represents a significant methodological
contribution to the field. These innovations offer new
tools for actuaries to better manage and assess loss
reserves, enhancing their ability to handle complex and
dynamic data. The study’s
policyholder-centric reserve allocation provides valuable
insights into how reserves can be more accurately
distributed based on policyholder risk profiles. This
approach promotes more equitable and targeted reserve

insurance focus on
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management, aligning with the diverse nature of
insurance portfolios. The introduction of a comprehensive
bonus rate system and a robust margin calculation
framework contributes to the evolution of reserve
management practices. These advancements help
actuaries better account for variations in claims
experience and policyholder behavior, leading to more
informed decision-making. The study demonstrates the
practical application of data science techniques within the
realm of actuarial science, fostering interdisciplinary
advancements and setting a precedent for future research.
This bridging of fields enhances the overall capability of
actuarial science to adapt to modern technological
developments.

The application of robust testing methodologies,
including scenario analysis and stress testing, advances
the field by establishing best practices for validating
actuarial models. These techniques ensure that models are
reliable and adaptable to various market conditions and
regulatory environments. The study’s focus on aligning
Al-driven models with IFRS 17 regulations contributes to
the field by ensuring that actuarial practices meet
contemporary accounting standards. This alignment
supports the transition to modern regulatory frameworks
and enhances the credibility of actuarial models in a
regulated environment.

In short, this study’s novelty lies in its innovative
integration of Al and machine learning with actuarial
methods, its introduction of new metrics and frameworks,
and its contributions to more precise and equitable reserve
management. These advancements represent a significant
step forward in the field of Actuarial Science, offering
both theoretical and practical benefits. In addition to that,
this study’s novelty lies in its integration of Al with
traditional actuarial methods, its development of a
comprehensive and detailed modeling framework, and its
rigorous approach to model validation. Its contributions to
actuarial science are marked by improved predictive
accuracy, enhanced regulatory compliance, and valuable
insights into policyholder-specific reserve allocation.

2. Survey of Methods and Literature Review

Automated actuarial loss reserving in non-life
insurance has significantly advanced with the advent of

actuarial data science and artificial intelligence (Al).

Traditional loss reserving methods, which include chain-
ladder and Bornhuetter-Ferguson methods, are being
complemented and in some cases replaced by
sophisticated Al-driven techniques. This review surveys
these methods, focusing on the integration of data science
and Al in actuarial practices.

Chain-Ladder Method The chain-ladder method,
introduced by [10], is one of the oldest and most
commonly used techniques for loss reserving. It relies on
the assumption that future claims development patterns
will follow historical trends. This method calculates
reserves by applying development factors derived from
historical data to current claims [10]. The Bornhuetter-
Ferguson (BF) method, as outlined by [11], combines the
chain-ladder approach with a priori estimates of ultimate
claims. This method is particularly useful when dealing
with new or emerging lines of business where historical
data is limited [11]. Generalized Linear Models (GLMs)
GLMs, as discussed by [10], have been widely adopted
for actuarial modeling due to their flexibility and ability
to handle various types of data distributions. They have
been utilized in loss reserving to model the relationship
between claim amounts and explanatory variables [10].

Machine Learning Techniques Recent advancements
in machine learning have introduced new methodologies
for loss reserving. Random forests, gradient boosting
machines, and neural networks have shown promising
results in improving reserve predictions. For instance, the
paper [11] explored the use of machine learning methods
for actuarial applications and highlighted their potential
advantages over traditional methods.

Deep Learning Models Deep learning, particularly
neural networks, has gained traction in actuarial science
due to its ability to capture complex patterns in data.
demonstrated that deep learning models could outperform
traditional models in loss reserving tasks by learning
intricate relationships from large datasets [12].

Ensemble methods, such as stacking and bagging,
combine multiple models to improve predictive
performance. The paper [13] provided an overview of
ensemble techniques, illustrating how they can enhance
the accuracy and robustness of loss reserving predictions
[13]. Hybrid Models Hybrid approaches that combine
traditional actuarial methods with Al techniques are
emerging. These models leverage the strengths of both
approaches, providing more robust and accurate loss
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reserves. For example, [14] proposed a hybrid model
integrating GLMs with machine learning algorithms to
improve loss reserving accuracy. Automated Reserving
Systems Automated systems incorporating Al have been
developed to streamline the reserving process. These
systems utilize Al to automate data preprocessing, model
selection, and reserve estimation, thus reducing manual
effort and increasing efficiency. The paper [15] reviewed
such systems and discussed their implications for the
actuarial profession.

The integration of actuarial data science and Al into
loss reserving practices represents a significant
advancement in non-life insurance. Traditional methods
continue to be valuable, but Al-driven approaches offer
enhanced accuracy and efficiency. The evolving
landscape of actuarial data science promises further
innovations and improvements in automated reserving
solutions.

3. Methodology

The research methodology for investigating actuarial
data science-based Al solutions for automated loss
reserving in non-life insurance presents a structured
approach to gather, analyze, and interpret data and this
methodology integrates both traditional actuarial
techniques and modern data science methods to evaluate
the effectiveness and efficiency of Al-driven solutions in
loss reserving.

3.1. Research Design

The research design for this study is a mixed-methods
approach, combining quantitative and qualitative analyses
to provide a comprehensive evaluation of Al solutions in
loss reserving. This design allows for the integration of
numerical data and theoretical insights, providing a robust
framework for assessing the impact of Al technologies on
actuarial practices. Quantitative Research Quantitative
research involves the use of statistical methods to analyze
numerical data. In this study, quantitative methods are
used to evaluate the performance of Al-driven loss
reserving models compared to traditional methods. Key
aspects include model comparison, data preparation, and
analytical techniques.

3.1.1. Model comparison

Employing statistical tests and metrics to compare the
accuracy, efficiency, and reliability of Al models (e.g.,
neural networks, random forests) [16]. Utilizing the
simulated data set in this study to train and test Al models.
Performance metrics such as mean squared error (MSE),
mean absolute error (MAE), and reserve accuracy are
calculated to evaluate model effectiveness [17].

On a separate note, conducting semi-structured
interviews with actuaries, data scientists, and insurance
professionals helps to gather insights on the challenges
and benefits of Al in loss reserving [18], [19], [20], [21]
and also analyzing case studies from insurance companies
that have implemented Al-driven reserving solutions to
understand real-world applications and outcomes [22].

3.1.2.  Data preparation

Data preparation involved cleaning and preprocessing
data to ensure quality and consistency. This includes
handling missing values, normalizing data, and splitting
datasets into training and testing subsets for model
evaluation.

3.1.3.  Analytical techniques

Statistical techniques were employed to analyze the
performance of traditional and Al-based models [23].
Various machine learning algorithms are applied to
develop predictive models for loss reserving. Algorithms
such as regression models, decision trees, and neural
networks are used to predict future claims based on
historical data [24]. Evaluating model performance using
cross-validation techniques to ensure robustness and
generalizability of the results [25].

The research methodology outlined provides a
comprehensive framework for evaluating actuarial data
science-based Al solutions in automated loss reserving.
By integrating quantitative and qualitative approaches,
the study aims to provide a nuanced understanding of how
Al technologies impact actuarial practices and their
effectiveness in improving loss reserving accuracy.
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3.2. The proposed approach

This section describes the general Machine learning-
based Automated Actuarial Loss Reserving Models using
the machine learning methods presented in Table Al.

3.2.1. Policyholder Actuarial Loss Reserving

Categories

To begin, the following four main policyholder
categories are proposed, as presented in Table 2.

Table 2. Automated Actuarial Loss Reserving Risk Pricing
Policyholder Categories.

Automated Actuarial Loss Reserving Policyholder Categories

Category A quicyholder wi'Fh. both Car Insurance and
Microfinance policies

Category B Policyholder with Microfinance policy only

Category C Policyholder with Car Insurance policy only

Category D Policyholder with no policy

3.2.2. Development of the AI-Based Automated
Actuarial Loss Reserving Models

This

employed for estimating, forecasting, and validating the

actuarial models. The process encompasses the following

subsection delineates the methodologies

steps:

1.  Automated Actuarial Frequency Models: For this
model, the dependent variable Y., represents
the Comprehensive Number of Claims, denoted
mathematically as Yieq = fireq(X), where X
denotes the vector of covariates. The model is
specified as:

Yireq = Bo + B1X1 + B2 Xo + -+ BpXp + €freq (4D
where f; are the regression coefficients and €eq
represents the error term.

2. Automated Actuarial Severity Models: This
model focuses on the Comprehensive Claim
Amount, Y.,. The dependent variable is
modeled as Y., = fi.,(X), and the model is
expressed as:

Ysev = Yo + V1X1 + V2 Xo + - + v Xq + €sens (42)

where y; are the severity coefficients and €, is

the error term.

3. Automated Actuarial Loss Reserve Inflation
Models: For modeling inflation, the dependent

variable I, is the Inflation Index derived from
the Consumer Price Index (CPI). The model is
given by:

Ilnf = 60 + 61X1 + 62X2 + -+ 67«XT + Einf, (43)

where §; are the inflation coefficients and €;,¢
represents the error term.

The integration of the three aforementioned models is
achieved through a multiplicative aggregation of their
predictions. Specifically, if ?ﬁeq, Y.y, and I, denote the
predicted values from the frequency, severity, and
inflation models respectively, then the combined forecast

~

Yeombined 18 computed as:
Ypalr = Yfreq X Ysey X ling- (44)

where AALR is the Automated Actuarial Loss Reserve
and thus this composite prediction leverages the
individual model forecasts to estimate the Automated
Actuarial Loss Reserves, thereby integrating the effects of
frequency, severity, and inflation into a unified actuarial
forecast.

3.3. Setting Up the Final Automated Actuarial
Loss Reserving Models

Following the automation of predictions derived from
the aforementioned regression models, we proceed to
compute the Inflation-Adjusted Frequency Severity
Automated Actuarial Loss Reserves. This quantity is
redefined and referred to as the Automated Actuarial Loss
Reserve Margin (AALRM).

Let Yparr denote the Comprehensive Claim Amount
extracted from the original test data set. The Upper
Actuarial Loss Reserve Margin (UAALRM) is calculated
by summing the AALRM with Y51 r, expressed as:

UAALRM = YAALR + AALRM. (45)

Similarly, the Lower Automated Actuarial Loss
Reserve Margin (LAALRM) is derived by subtracting the
AALRM from YAALR:

LAALRM = Yy g — AALRM. (46)

The Robust Automated Actuarial Loss Reserve
Margin (RAALRM) is then determined as the average of
the UAALRM and LAALRM:
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UAALRM + LAALRM
> .

A new data set is constructed containing the three
principal variables: RAALRM, LAALRM, and
UAALRM. A final regression model is fitted with
RAALRM as the dependent variable and LAALRM and
UAALRM as independent variables. This regression
model is expressed as:

RAALRM = (47)

RAALRM = a; + a;LAALRM + a,UAALRM 4g)
+ €RAALRM
where ay, a;, and a, are the regression coefficients,

and egaarrMm denotes the error term.

The model provides predictions for the Robust
Automated Actuarial Loss Reserves (RAALR), which are
then aggregated to compute the Total RAALR.
Specifically, if RAALR,; represents the predicted RAALR
for observation i, the Total RAALR is given by:

n
Total RAALR = Z RAALR;, (49)
i=1

where n is the number of observations in the data set.

This process results in a comprehensive estimation of
the actuarial loss reserves, integrating the effects of
frequency, severity, and inflation adjustments into a
robust final margin.

3.4. Terminology and Assumptions for
Automated Actuarial Loss Reserving
Models

The following terminology concerning actuarial loss
reserving is defined, including both existing and new
types of reserves, as presented in Table 3.

Table 3. Definition of Types of proposed Actuarial Reserves.

Type of Actuarial

Definitions
Loss Reserve

IBNYR Incurred But Not Yet Reported Reserve
RBNYS Reported But Not Yet Settled Reserve
REOPENED Reopened Reserve
REINSURANCE Reinsurance Reserve

e IBNYR (Incurred But Not Yet Reported): Reserve
allocated for incurred claims not yet reported or
known to the insurer. Applicable to all policyholder
categories defined in Table 2.

e RBNYS (Reported But Not Yet Settled): Reserves
for reported but not yet settled claims from both
microfinance and car insurance services.

e REOPENED (Reopened Reserve): Reserves for
claims that were previously closed or partially paid
but have been reopened for full settlement.

e REINSURANCE (Reinsurance Reserve): Reserves
for catastrophic losses from either microfinance or car
insurance services.

3.5. Proposed Framework for Distribution of
Automated Actuarial Loss Reserves

The proposed framework for distributing the
Automated Actuarial Loss Reserves is shown in Table 4.

Table 4. Proposed Framework for Distribution of Automated
Actuarial Loss Reserves.

Proposed Automated Actuarial Loss

Type of Reserve Reserves Distribution
IBNYR 80% of Total RAALR
RBNYS 15% of Total RAALR

REOPENED 4% of Total RAALR

REINSURANCE 1% of Total RAALR

As indicated in Table 4, a large portion of the Total
RAALR is allocated to IBNYR reserves (80%) to cover
unreported comprehensive claim amounts. The model
assumes efficient claim settlement upon flagging, leading
to lower proportions for RBNYS reserves (15%),
REOPENED reserves (4%), and REINSURANCE
reserves (1%).

3.6. Distribution of Reserves Across
Policyholder Categories

The assumptions for the distribution of reserve types
across policyholder categories are outlined in Table 5.
According to Table 5, Category A, which includes
policyholders with both microfinance and car insurance
policies, receives the highest proportion (50%). Category
B follows with 30%, Category C with 20%, and Category
D with 0%, as it has no active policyholders.
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Table 5. Policyholder Reserve Allocation Categories.

Table 6. Policyholder Category No Claims Bonus Rate.

Policyholder Reserve Allocation Categories

Category Category Category Category
A B C D
IBNYR 50% 30% 20% 0%
RBNYS 50% 30% 20% 0%
REOPENED 50% 30% 20% 0%
REINSURANCE 50% 30% 20% 0%

3.7. Computations of the proposed types of
Reserves

Let CAALR; denote the Comprehensive Automated
Actuarial Loss Reserve for policyholder category i. The
CAALR for each policyholder category is computed as
follows:

ni
CAALRl = Z Rij' (50)
j=1

where R;; represents the reserve associated with the j-

th policyholder within category i, and n; is the total

number of policyholders in category i. The
comprehensive reserve for each category is thus derived
from the summation of individual reserves across all

policyholders within that category.

Let ACAALR denote the Aggregate Comprehensive
Automated Actuarial Loss Reserve. It is calculated by
aggregating the CAALR values across all policyholder
categories. Mathematically, this can be expressed as:

K
ACAALR = Z CAALR;, (51
i=1
where k represents the total number of policyholder
categories. The ACAALR is the summation of the
CAALR for each individual policyholder category,
providing a holistic measure of the total loss reserves
required across the entire portfolio.

3.8. Policyholder Category No Claims Bonus
Rates

Assumptions regarding bonus rates for each

policyholder reserving category are detailed in Table 6.

Category Base Bonus Variable Bonus Final Bonus
Rates Rates Rates
A 1% 4% 5%
B 1% 3% 4%
C 1% 2% 3%
b 0% 0% 0%

As shown in Table 6, policyholders in each category
are entitled to a base bonus rate. The variable bonus rate
is the difference between the final and base bonus rates
and depends on claim amounts. The final bonus rate is the
sum of the base and variable bonus rates. Category A has
the highest final bonus rate (5%) due to the large
proportion of active policyholders, followed by
Categories B (4%) and C (3%), with Category D receiving
no bonus.

The Evaluation of Policyholder-Based Automated
Actuarial Loss Reserves is carried out for two
scenarios: the short-term and the long-term periods.

3.9. Best model (ranger) evaluation

3.9.1.  Data preparation

The best model evaluation begins with the preparation
of a dataset, specifically a simulated general insurance
dataset. This dataset includes variables pertinent to non-
life insurance claims, such as policy status, policy type,
car ownership, policy renewals, exposure, and more. The
data is split into training and testing sets, with 80% used
for model training and the remaining 20% reserved for
testing.

3.9.2.  Model Development

Frequency Model: To estimate the number of claims,
a Random Forest model is constructed using the ranger
package in R. The model is trained on a range of predictor
variables  including  policy-related factors and
demographic attributes. Predictions are made on the test
set, and model performance is evaluated using Mean
Squared Error (MSE), Mean Absolute Error (MAE), and
Root Mean Squared Error (RMSE).
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Severity Model: A second Random Forest model
predicts the number of claims based on similar predictors.
Performance metrics (MSE, MAE, and RMSE) are
calculated to assess the accuracy of the severity estimates.

Inflation Model: The third Random Forest model
predicts the inflation index, a critical component for
adjusting claim amounts. This model is also evaluated
using MSE, MAE, and RMSE.

3.9.3.  Automated Actuarial Loss Reserves
Calculation

The automated actuarial loss reserves are calculated by
multiplying the predicted number of claims, severity, and
inflation index. This product represents the estimated
reserves required to cover future claims, adjusted for
inflation.

3.9.4. Model comparison between the Ranger
model and Simulated Chain Ladder model

To validate the performance of the Random Forest-
based loss reserving model, results are compared with
traditional actuarial methods, specifically the Chain
Ladder method. The Chain Ladder model is simulated
using synthetic claim amounts to estimate loss reserves. A
comparison is made between the reserves estimated by the
Chain Ladder method and those derived from the Random
Forest model.

3.9.5. IFRS 17 Compliance of the Ranger Model

The IFRS 17 regulations require insurers to recognize
and measure insurance contracts in a manner that reflects
their financial position and performance. To ensure
compliance with IFRS 17, additional calculations are
performed to determine the Contractual Service Margin
(CSM) and Present Value of Future Cash Flows (PVFCF).
This involves:

— Predicting future cash flows based on the loss
reserves.

— Discounting these future cash flows to present
value.

— Calculating the CSM as the difference between the
loss reserves and the discounted cash flows.

3.9.6. Robustness and Stress Testing

Robustness is tested by introducing perturbations to
the predicted values and observing the impact on the
automated actuarial loss reserves. This involves adding
random noise to the predictions and comparing the results
to those obtained from the original model. Summary
statistics and density plots are used to assess the stability
of the model under perturbations. Stress tests are
conducted by varying key parameters such as frequency,
severity, and inflation rates. Multiple scenarios are
generated to evaluate how changes in these parameters
affect the loss reserves. This includes base and stressed
scenarios, with results visualized using box plots and
summary statistics.

3.9.7.  Scenario Analysis

Scenario analysis involves simulating different
potential future states to understand the impact of varying
assumptions on the automated actuarial loss reserves. This
includes adjusting frequency, severity, and inflation rates
within defined ranges and assessing the impact on the

Teserves.

3.10. Novelty in Methodology

The methodology outlined in this study introduces
several novel elements that advance the field of actuarial
science and automated loss reserving under IFRS 17. The
key innovations are:

— Integration of AI-Driven Models with Traditional
Methods: The study combines advanced machine
learning algorithms, specifically Random Forests,
with traditional actuarial methods such as the
Chain Ladder technique. This hybrid approach
enhances the robustness and accuracy of loss
reserving models by leveraging the predictive
power of Al while maintaining the interpretability
and historical context of traditional methods.
Model

of a

Framework:  The
multi-faceted Al-driven
actuarial model framework is a significant

—  Comprehensive
development

innovation. The methodology includes separate
models for frequency, severity, and inflation, each
tailored to predict specific components of loss
reserves. This detailed segmentation allows for a

Online First



Science, Engineering and Technology

Vol. 5, No. 2, Online First

more nuanced and accurate estimation of reserves
compared to traditional lumped models.

— Innovative  Aggregation  Technique:  The
methodology introduces a novel aggregation
technique where the predictions from frequency,
severity, and inflation models are combined
multiplicatively to estimate the Automated
Actuarial Loss Reserves (AALR). This approach,
which integrates the effects of multiple predictive
components into a unified forecast, provides a
more comprehensive view of future claims than
simple additive methods.

— Robustness and Stress Testing: The methodology
employs rigorous robustness and stress testing
techniques, including the introduction of random
noise and the evaluation of multiple stress

This rigorous testing framework

ensures that the Al-driven models are not only

accurate under normal conditions but also resilient

scenarios.

to variations and uncertainties, thereby enhancing
their practical applicability.

— IFRS 17 Compliance Integration: A distinctive
feature of the methodology is its explicit alignment
with IFRS 17 requirements. By calculating the
Contractual Service Margin (CSM) and Present
Value of Future Cash Flows (PVFCF) based on
Al-driven predictions, the study ensures that the
loss reserving models comply with the latest
accounting standards, thereby bridging the gap
between actuarial practice and regulatory
requirements.

— Policyholder-Specific Reserve Allocation: The
methodology’s approach to reserve distribution
across different policyholder categories, including

types,

represents a novel application of Al to tailor
actuarial reserves. This category-specific focus

innovative bonus rates and reserve

enhances the precision of reserve allocations and
better reflects the risk profiles of different
policyholder groups.

— Scenario Analysis and Prediction Adjustments:
The inclusion of scenario analysis, which involves
simulating various future states to assess the
impact on reserves, is a unique contribution. This
technique allows for a deeper understanding of
how different assumptions affect the loss reserves

and provides valuable insights for decision-
making under uncertainty.

In a nutshell, the novelty of this methodology lies in its
integration of cutting-edge Al techniques with traditional
actuarial practices, the development of a comprehensive
and segmented model framework, rigorous testing
procedures, and alignment with contemporary regulatory
standards. These innovations collectively advance the
field of automated loss reserving and offer a more precise,
compliant, and adaptable approach to actuarial practice.

4. Data

Simulated research data refers to information
generated through simulation processes, often used to
mimic real-world scenarios for analysis and testing
purposes. This type of data is not collected from actual
experiments or observations but is created using statistical
models, algorithms, or other computational methods to
replicate conditions or outcomes that researchers are
interested in studying [26] and [27].

4.1. The general structure of the simulated non-
life insurance data

The Comprehensive General Car Insurance and
Microfinance data has been simulated for the period from
1989 to 2022, spanning 33 years. The dataset includes a
sample of 40,000 policyholders and is organized into
seven primary categories: Policyholder Personal Data,
Microfinance Policyholder Data, Policyholder Vehicle
Data, Comprehensive Policyholder Claim Data,
Comprehensive Policyholder Premium Payment Data,
and Policyholder External Data.

the Automated Actuarial Loss
Reserving Model, 48 variables derived from these

categories were utilized, incorporating eight machine

In developing

learning algorithms. Of these 48 variables, particular
focus was placed on three key principal variables
(described in subsection 4.3 below), which have been
crucial for automating both car insurance and
microfinance services on a single platform.
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4.2. Contribution of the Simulated Data to
Actuarial AI Solutions

Risk Assessment and Segmentation: Variables such
as Policy Status, Policy Type, and Claim Score assist in
segmenting policyholders and assessing their risk
profiles.

Reserve Calculation: Claim-related variables like
Claim Incurred and Case Reserves are crucial for
determining reserves and predicting future liabilities.

Predictive Modeling: Combining historical data (e.g.,
Claim History) with external factors (e.g., Retained
Income) supports predictive modeling for loss reserving.

Financial Behavior Analysis: Microfinance data
(e.g., Amount Invested) provides insights into financial
behaviors that affect risk and reserve calculations.

Inflation and Cost Adjustments: /nflation Index and
operational costs (e.g., Underwriting costs) are important
for adjusting reserves and premiums to account for
inflation and costs.

This comprehensive dataset enables the development
of robust actuarial models for automated loss reserving by
integrating diverse policyholder profiles, claim details,
and financial factors.

4.3. Principal data Variable Exploratory
Analysis for Automated Actuarial Loss
Reserving Model

The principal data variables are defined as follows:

Comprehensive Claim Amount () is defined as the
sum of the claim incurred from car insurance services and
the amount requested from microfinance services.
Mathematically, this can be expressed as:

CCA =CI+ AR (52)

where:

— represents the Claim Incurred from car
insurance services.

— represents the Amount Requested from
microfinance services.

Comprehensive Paid Amount () is calculated as the
sum of the claims paid from car insurance services and the

microfinance amounts paid by the insurance company.
This can be formulated as:

CPA = CP + MFAP (53)
where:

—  denotes the Claims Paid from car insurance
services.

—  denotes the Microfinance Amount Paid by the
insurance company.

Comprehensive Number of Claims () is defined as
the sum of the number of claims from car insurance
services and the number of requests from microfinance
services. This can be expressed as:

CNC = NC + NR (54)
where:

— NC represents the Number of Claims from car
insurance services.

— NR represents the Number of Requests from
microfinance services.

Some further exploratory data analysis is shown
below.

Mistageam af Comprahansive Numbar of Claims Histogram of Camprabansiva Claim Amount Mstogeam af Comprahansive Pald Amaunt

| ’77—M . ‘1_ R

Figure 1. Histograms for key data variables.

Figure 1 shows that the three main variables are close
to being normally distributed, as indicated by the bell
shape.

4.4. Correlation Analysis for key data variables

Correlation analysis is a statistical technique used to
measure the strength and direction of the relationship
between two or more variables [27]. It helps in
understanding how changes in one variable are associated
with changes in another variable. In the context of
simulated data variables, correlation analysis can provide
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insights into the dependencies and interactions between
different variables generated through simulation.

The most common measure of correlation is the
correlation coefficient, often denoted by p. It ranges from
-1to 1. A p of 1 indicates a perfect positive correlation (as
one variable increases, the other variable also increases),
-1 indicates a perfect negative correlation (as one variable
increases, the other variable decreases), and 0 indicates no
correlation. In addition to that, Positive Correlation is hen
an increase in one variable is associated with an increase
in the other variable, Negative Correlation is when an
increase in one variable is associated with a decrease in
the other variable and finally No Correlation when there
is no apparent relationship between the variables [28]. In
that regard the results for correlation analysis for key
variables is shown below accordingly.
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Figure 2. Correlation analysis for key data variables.

Figure 2 shows a heatmap showing the correlation
between each pair of variables. Positive correlations are
presented towards red, negative correlations towards blue,
and no correlation towards white.

The correlation matrix shows the pairwise correlation
coefficients between three key variables:

— Comprehensive Number of Claims (CNC)
— Comprehensive Claim Amount (CCA)
— Comprehensive Paid Amount (CPA)

The matrix is as follows:

CNC CCA CPA
CNC 1.00 -0.00 0.00
CCA -0.00 1.00 -0.00
CPA 0.00 -0.00 1.00

Diagonal Elements (1.00): These indicate that each
variable is perfectly correlated with itself, which is
expected.

Off-Diagonal Elements:

— The correlation between the Comprehensive Number
of Claims and Comprehensive Claim Amount is close
to zero, indicating a very weak or negligible linear
relationship between these two variables.

— The correlation between the Comprehensive Number
of Claims and Comprehensive Paid Amount is also
close to zero, suggesting little to no linear
relationship.

— The correlation between the Comprehensive Claim
Amount and Comprehensive Paid Amount is close to
zero, indicating a negligible linear relationship
between these two metrics.

The near-zero correlations among the key variables
suggest that these variables provide unique, non-
overlapping information about the insurance and
microfinance processes. This independence is beneficial
for the development of a robust model as it allows for the
modeling of different aspects of the data without
redundancy. Since these variables do not exhibit strong
correlations, it implies that including all three variables in
the model might enhance its complexity and accuracy by
capturing diverse aspects of the data. The model can
leverage this unique information to improve predictions
and automate loss reserving more effectively. The lack of
strong correlations between the key variables may guide
the feature selection process, ensuring that the model
includes relevant and diverse variables without redundant
information. This can lead to better interpretability and
performance of the Al-based solution. By incorporating
variables with weak correlations, the model is less likely
to be overfitted to any single data aspect. This can enhance
the generalization of the Automated Actuarial Loss
Reserving Model, making it more reliable across different
scenarios and datasets. Understanding these relationships
helps in interpreting the model’s results and the data
characteristics. It can assist in identifying areas where the
model may need improvement or where additional data
might be required to capture underlying patterns.

In short, the correlation matrix supports the
development of a more nuanced and effective Al-based
solution for automated actuarial loss reserving by
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ensuring that the model leverages a diverse set of
variables, potentially enhancing its accuracy and
robustness in non-life insurance applications.

4.5. Factor Analysis and Principal Component
Analysis

Factor Analysis is a statistical technique used to
identify underlying relationships between variables. It
aims to reduce the number of variables by grouping them
into factors that represent underlying dimensions. This
method is commonly used in social sciences, psychology,
and marketing to identify latent constructs and simplify
data structures [28]. Principal Component Analysis
(PCA) is a dimensionality reduction technique that
transforms a large set of variables into a smaller set of
uncorrelated components, which capture the maximum
variance in the data. PCA is often used in exploratory data
analysis and for predictive modeling to simplify data
while retaining its essential characteristics [29].

In the context of factor analysis or principal
component analysis (PCA), Table 7 shows the factor
loadings which represent the correlations between the
variables and the underlying factors

components.

or principal

Table 7. Factor loadings for key variables.

Metrics MR2 MR3 MRI1
SS loadings 0.003 0.003 0.000
Proportion Variance 0.001 0.001 0.000
Cumulative Variance 0.001 0.002 0.002

Table 8 shows how the PCA relates to standard
deviation, proportion of variance, and cumulative

proportion.

Table 8. Principal component analysis.

Metrics PCl PC2 PC3
Standard deviation 1.00 1.00 1.00
Proportion of Variance 0.34 0.33 0.33
Cumulative Proportion 0.34 0.67 1.00

All principal components (PC1, PC2, PC3) have the
same standard deviation of 1.00. This indicates that each
component has been scaled to have a standard deviation
of 1, which is typical in PCA to standardize the
components. The PCA results suggest that the three
principal components together capture all the variance in
the dataset. This means that if the original data had more
variables, the PCA has effectively reduced the
dimensionality while retaining the full information

content. In actuarial data science, reducing dimensionality
can simplify models, reduce computational costs, and
help in focusing on the most important features. Since
each component captures a significant portion of the
variance, the PCA components can be used as new
features in the Al models for loss reserving. These
components are uncorrelated and collectively explain all
the variance, which helps in building models that are
robust and less likely to suffer from multicollinearity. By
using principal components as inputs, the model can
potentially become more efficient. With reduced
dimensions and uncorrelated features, the Al models for
actuarial loss reserving can process data more quickly and
efficiently, which is crucial for real-time or large-scale
loss reserving applications. The equal proportion of
variance explained by the principal components suggests
that each component is contributing meaningfully to the
model. This can help in understanding the data structure
better and in explaining the model’s decisions based on
the transformed components, which can be useful for
validating and interpreting the results of the loss reserving
models.

In the context of automated actuarial loss reserving,
the insights gained from PCA can lead to better risk
assessment models. By focusing on principal components
that encapsulate the majority of the variance, actuaries can
develop more accurate models for predicting future losses
and making informed decisions.

In short, the PCA results indicate that the
dimensionality of the data can be effectively reduced
while retaining all the variance. This can positively impact
the development of Al solutions for automated loss
reserving by simplifying the data, improving model
efficiency, and aiding in better risk assessment and
decision-making.

4.6. Data pre-processing, data scaling and data
partitioning

After loading the data in R caret, R package has been
used to generate the one hot encored the simulated
General Auto Insurance Microfinance data. From there
the data has been pre-processed first by scaling it using
min-max approach followed by data partitioning into
training data set (80%) and test data set (20%). Data were
analyzed using R.
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5. Results

This section shows results obtained from the
methodology for our proposed Automated Actuarial Loss
Reserving Model.

5.1. Machine learning Based Automated
Actuarial Loss Reserving Model Methods

Machine learning (ML) methods play a crucial role in
the construction of Automated Actuarial Loss Reserving
Models. Furthermore, the ML algorithms can capture
complex, non-linear relationships in insurance claims data
that may be challenging for traditional actuarial methods.
This leads to more accurate and precise loss reserve
estimates and also handle the Big Data, including
historical claims, policyholder information, and external
factors. ML can efficiently process and analyze large
datasets, making it possible to extract valuable insights
from this wealth of information. Subsequently, ML
models can be designed to continuously adapt and update
based on new data. This enables insurers to have dynamic
and up-to-date loss reserves, which is especially valuable
in rapidly changing markets. As the name suggests,
Automated Actuarial Loss Reserving Models can
significantly reduce the need for manual calculations and
interventions. This not only saves time but also minimizes
the potential for human error. Machine learning models
can process and analyze data much faster than traditional
manual methods and this is essential in an industry where
time is of the essence, particularly for regulatory reporting
and financial planning.

In short, ML methods are instrumental in the
construction of Automated Actuarial Loss Reserving
Models because they offer improved accuracy, efficiency,
and flexibility while also enabling real-time updates and
the ability to detect patterns and emerging trends. This
contributes to better risk management, regulatory
compliance, and overall competitive advantages for
insurance companies.

5.2. Actuarial Loss Reserving Inflation Adjusted
Frequency Severity Models

Actuarial Loss Reserving Inflation Adjusted
Frequency Severity (ALR-IAFS) machine learning-based
models serve several critical purposes in the insurance
industry. These models are designed to estimate future

insurance claim amounts while accounting for inflation,
claim frequency, and claim severity. ALRIAFS models
provide insurance companies with accurate estimates of
future claim amounts, which is essential for financial
planning and risk management. These models take into
account the expected number of claims (frequency) and
the expected size of each claim (severity), adjusted for
inflation. Moreover, Inflation can erode the value of
reserves over time. ALR-IAFS models
explicitly adjust for inflation, ensuring that loss reserves

insurance

remain adequate to cover future claim costs. This is
particularly important in long-tail insurance lines where
claims may be paid out over several years. By estimating
future claim frequencies and severities, insurance
companies can better understand and manage their
exposure to risk. ALR-IAFS models allow for more
informed decisions about capital allocation, underwriting,

and pricing to mitigate potential financial risks.

In closing, Actuarial Loss Reserving Inflation
Adjusted Frequency Severity (ALR-IAFS) machine
learning-based models are critical tools for insurance
companies to estimate future claim amounts while
considering inflation, claim frequency, and severity.
Ultimately, these models support sound financial
planning, risk management, regulatory compliance, and
strategic decision-making, ultimately contributing to the
financial stability and competitiveness of insurance

companies.

The Table 9 below shows a combination of frequency
models, severity models and finally inflation models as
shown below.

Table 9. Actuarial Loss Reserving Inflation Adjusted
Frequency Severity Models.

Frequency . .
ML Models Severity Models Inflation Models
Model Time RMSE Time RMSE Time RMSE
(sec) (sec) (sec)
GLM 1.34 53.4943 0.46 2,009.4710 0.65 0.5129
GAM 1.16 53.5111 0.99 2,011.7860 0.84 0.5120
RPART 2.35 53.4166 1.69 2,007.6940 0.79 0.8281
RANGER 55.93 53.2332 | 269.12 | 2,011.8630 62.91 0.5124
XGB 6.62 53.4074 6.73 2,013.4440 6.82 0.5119
LAR 12.18 53.6918 15.24 2,012.2690 31.19 0.5124
SVM 289.67 | 53.3934 | 264.64 | 2,012.6160 | 1095.67 | 0.5135
ANN 8.56 53.6989 9.11 2,011.8730 6.20 0.5121
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The Table 9 compares different machine learning
(ML) models across three types of actuarial loss reserving
models: Frequency, Severity, and Inflation. The table
includes metrics for each model in terms of computation
time and Root Mean Square Error (RMSE).

With regards to Frequency Models: Fastest execution
time (1.34 seconds) came from GLM with an RMSE of
53.4943 and this shows a good balance of speed and
accuracy. GAM is slightly slower than GLM but with
similar performance (RMSE of 53.5111). RPART
incurred a moderate speed and RMSE (53.4166), slightly
better than GLM and GAM. RANGER (is the slowest
execution time (55.93 seconds) but slightly better RMSE
(53.2332). XGB is fast with a good RMSE (53.4074),
making it a competitive choice. LAR is slower than GLM
and GAM with an RMSE of 53.6918, indicating less
accuracy in this context. SVM has the slowest execution
time (289.67 seconds) with RMSE comparable to the best
models, suggesting it is computationally intensive with a
comparable performance. ANN has moderate speed and
an RMSE of 53.6989, performing similarly to other
models.

With regards to Severity Models: GLM scooped the
fastest execution time (0.46 seconds) with an RMSE of
2,009.4710, showing a trade-off between speed and
accuracy. GAM is slightly slower (0.99 seconds) with a
similar high RMSE (2,011.7860). RPART has moderate
speed with an RMSE of 2,007.6940, showing slightly
better performance. RANGER is much slower (269.12
seconds) but with an RMSE of 2,011.8630, similar to
GLM and GAM.XGB has moderate execution time (6.73
seconds) with an RMSE of 2,013.4440, slightly worse
than GLM and GAM.LAR has slowest execution time
(15.24 seconds) with an RMSE of 2,012.2690,
comparable to other models. SVM is the slowest in terms
of execution time (264.64 seconds) with an RMSE close
to other models. ANN has moderate execution time (9.11
seconds) with an RMSE of 2,011.8730, performing
similarly to XGB and LAR.

With regards to Inflation Models: GLM has the fastest
execution time (0.65 seconds) with an RMSE of 0.5129,
indicating good performance. GAM has similar execution
time (0.84 seconds) with slightly better RMSE (0.5120).
RPART is slightly slower (0.79 seconds) with an RMSE
of 0.8281, showing less accuracy. RANGER is slow
(62.91 seconds) with an RMSE of 0.5124, which is

comparable to GLM and GAM.XGB has fast execution
time (6.82 seconds) with an RMSE of 0.5119, similar to
GLM and GAM.LAR has moderate execution time (31.19
seconds) with an RMSE of 0.5124.SVM has slowest
execution time (1,095.67 seconds) with an RMSE of
0.5135, indicating a trade-off between speed and
accuracy. ANN has moderate execution time (6.20
seconds) with an RMSE of 0.5121, similar to XGB and
slightly better than SVM.

In closing, the Table 9 helps in choosing the
appropriate model based on the trade-offs between
computation time and RMSE. For example, GLM and
XGB provide a good balance of speed and accuracy across
different models. GLM, XGB, and ANN are among the
faster models with relatively low RMSE values in the
inflation models, making them suitable for applications
where computation speed is crucial. Models like
RANGER and SVM show varying performance across
different types of models. For severe cases where
accuracy is paramount, even if slower, these models might
be considered based on the need for precision. The table
provides insights into which models perform well under
different conditions. For instance, GLM and XGB are
good choices for models where a balance between speed
and accuracy is needed, while RANGER and SVM might
be used when model accuracy is more critical and
computational resources are available. Understanding
these trade-offs helps in selecting the best model for
specific applications within actuarial loss reserving,
optimizing both model performance and operational
efficiency.

5.3. Total Automated Actuarial Inflation
Adjusted Frequency Severity Loss Reserves

The Automated Actuarial Inflation Adjusted Loss
Reserves (AAIALR) are computed by multiplying the
predicted number of claims, the predicted claim amounts,
and the predicted inflation values obtained from the
machine learning models applied to the test data. The total
AAIALR is then determined by summing these individual
values, as represented by Equation (55):

AAIALR = Freqpredictions X Sevpredictions X Inflpredictions (55)

From the Table 10, GLM (405.6083) attained the
highest score for Total AALR predictions, followed by
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XGB (405.3866), followed by ANN (405.2760) and the
least came from came from RPART (182.2968).

Table 10. Total Automated Actuarial Loss Reserving Inflation

Adjusted AALR.

Actuarial Loss Reserve Models

ML Model Total AALR Predictions
GLM 405.6083
GAM 400.6047
RPART 182.2968
RANGER 402.8569
XGB 405.3866
LAR 402.2832
SVM 397.9315
ANN 405.2760

5.4. Final Machine Learning models for
estimating and predicting the Robust
Automated Actuarial Loss Reserves

The results for the final Machine Learning models for
estimating and predicting the Robust Automated
Actuarial Loss Reserve have been constructed following
the methodology sub subsection 3.3 hence the following
results are obtained and presented in a Table 11.

Table 11. Final Automated Actuarial Loss Reserving Model.

Second Stage Actuarial Loss Reserve Models

Time

ML Model (sec) pred value Max Min Range RMSE
GLM 0.02 2,002.8090 2,676.8750 1,353.8920 1,322.9830 0.0000
GAM 0.00 1,998.4520 2,673.9730 1,306.0440 1,367.9280 0.0000

RPART 0.00 1,954.2920 2,423.8510 1,583.0360 840.8148 37.7813

RANGER 253 2,001.7290 | 2,666.5370 1,281.9200 1,384.6170 277.0213

XGB 0.34 2,004.1210 | 2,713.3630 1,335.6060 1,377.7570 2.6967
LAR 0.69 2,000.9420 2,610.6030 1,306.0440 1,304.5590 0.0000
SVM 048 1,039.6070 2,020.6850 150.4887 1,870.1960 997.5602
ANN 0.39 918.4288 1,857.0300 89.1541 1,767.8760 1,108.6850

The processing time was affectionately lower for all
machine learning algorithms when compared to previous
models presented on Table 9 since the sample size is now
smaller and also run on two key defined independent
variables. GLM and GAM have the shortest execution
times (0.02 and 0.00 seconds, respectively), making them
the fastest models in this context. RANGER takes the
longest time (2.53 seconds), suggesting it is the most
computationally intensive model among those listed.
XGB, SVM, and ANN have moderate execution times
(0.34, 0.48, and 0.39 seconds, respectively). GLM yields
the highest predicted value (2,002.8090), followed closely
by XGB (2,004.1210) and RANGER (2,001.7290). ANN
provides the lowest predicted value (918.4288), indicating
it predicts substantially lower values compared to other
models. SVM has the largest range of prediction

(1,870.1960), indicating a wide spread between its
maximum and minimum predictions. ANN and XGB also
show significant ranges (1,767.8760 and 1,377.7570,
respectively). GAM and LAR have the smallest ranges
(1,367.9280 and 1,304.5590, respectively), suggesting
less variability in their predictions. GLM, GAM, and LAR
achieve perfect RMSE scores of 0.0000, indicating that
these models have highly accurate predictions in the
context provided. XGB has a low RMSE of 2.6967,
reflecting relatively good accuracy. RPART has a
moderate  RMSE of 37.7813, showing acceptable
performance but less accurate than GLM, GAM, and
LAR. SVM and ANN have high RMSE values (997.5602
and 1,108.6850, respectively), indicating poorer
prediction accuracy compared to the other models.

5.5. Distribution of Total Automated Actuarial
Loss Reserves (AALR)

The predictions from the final models have given rise
to predicted RAALRM which we used to determine the
Automated Actuarial Loss Reserves (AALR). These were
multiplied with allocations proposed on Table 4.
Afterwards these were summed to give Total Automated
Actuarial Loss Reserves (AALR) for each machine
learning model and the results obtained are presented on
Table A2. Moreover, those results have been summarized
in the Figure 3 below.
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Figure 3. Total Automated Actuarial Loss Reserves.
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From the Figure 3 above the RANGER obtained the
highest values for AALR Total reserves distributed across
the policyholder categories which places it to be the best
machine learning model too.

5.6. Allocation of Automated Actuarial Loss
Reserves in Policyholder categories

Automated actuarial loss reserve allocation in

policyholder categories using machine learning
algorithms can offer several advantages over traditional
methods. Machine learning algorithms can analyze large
volumes of data more comprehensively and efficiently
than traditional methods. This can lead to more accurate
predictions of future loss reserves. By considering various
factors  simultaneously, such as  policyholder
demographics, historical claims data, and external
variables, machine learning models can capture complex
patterns and relationships that may not be apparent
through manual analysis. Moreover, by categorizing
policyholders into groups (e.g., categories A, B, C, and
D), machine learning models can provide a more granular
understanding of risk profiles.

Each category can represent a different level of risk
exposure based on various attributes such as age, location,
policy type, and claims history. Machine learning
algorithms can identify which factors are most predictive
of future losses within each category. Machine learning
models can adapt and learn from new data over time,
allowing for dynamic adjustments to loss reserve
allocations. As a result, the rationale for using machine
learning algorithms in the allocation of automated
actuarial loss reserves lies in their ability to provide more
accurate, granular, and dynamic assessments of risk,
leading to optimized resource allocation and improved
decision-making in the insurance industry. The AALR
allocations proposed on the Table 5 are presented on the
plots below.

The Figures 4, 5, 6, and 7 illustrates the distribution of
Automated Actuarial Loss Reserves (AALR) across
different reserve categories using the ANN algorithm. The
data shows that the ANN algorithm allocates a significant
portion of AALR to each reserve type, including Total
IBNYR (Incurred But Not Yet Reported), Total RBNYS
(Reported But Not Yet Settled), Total REOPENED, and
Total REINSURANCE reserves. Across the policyholder

reserving categories A, B, and C, the Total AALR IBNYR
Reserves consistently represent the largest share,
followed by Total AALR RBNYS, then Total AALR
REOPENED, with AALR REINSURANCE being the
least allocated. Policyholder Category A receives the
largest allocation for each of the four main reserve types,
followed by Category B, Category C, and Category D.
The allocation patterns in the Figure 4 to Figure 7 reflect
the substantial portion of AALR directed towards IBNYR
reserves. This allocation addresses the bulk of unreported
comprehensive claims, particularly from microfinance
and car insurance policyholders, who constitute the
largest segment. While RBNYS, REOPENED, and
REINSURANCE reserves receive smaller allocations
compared to IBNYR reserves, their presence across all
policyholder categories plays a crucial role. They
contribute to minimizing reinsurance costs, and facilitate
effective catastrophic reserving and comprehensive claim
settlements. The Al-driven real-time claim settlement
process ensures minimal or zero delays in reporting and
settlement, enhancing overall efficiency.
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Figure 4. AALR IBNYR.
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Figure S. AALRR RBNYS.
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5.7. Comprehensive Automated Actuarial Loss
Reserves (CAALR)

The CAALR are computed by summing the Total
AALR distributed in the four main types of actuarial
reserves presented in the Figure 8 in their respective
categories with reference to each machine learning model
used as indicated by system of equations presented on
Equation (56).

CAALR, = IBNYR, + RBNYS, + REOPENED, + REINSURANCE,
CAALRy = IBNYRy + RBNYS, + REOPENEDy + REINSURANCE,

CAALR, = IBNYR, + RBNYS, + REOPENED, + REINSURANCE, ~(50)
CAALR, = IBNYR,, + RBNYS, + REOPENED,, + REINSURANCE,

where A, B, C, D are policyholder categories
respectively.

The results in Table A7 are obtained and the Figure 8
is generated. From the Figure 8 the RANGER algorithm
maintained the highest peak for CAALR once again.
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Figure 8. Comprehensive automated actuarial loss reserves.

5.8. Aggregate Comprehensive Automated
Actuarial Loss Reserves (ACAALR)

This was computed by summing all the
Comprehensive Automated Actuarial Loss Reserves
(CAALR) for each of the machine learning algorithms
and came up with the Aggregate Comprehensive
Automated Actuarial Loss Reserves (ACAALR) paying
special attention to policyholder categories respectively.
The immediate results for this are shown by summing
Table A7 and got Table A8 which has been utilized to
present the Figure 9. This is presented by system of
equations (57).

ACAALR_CAALR, + CAALRy + CAALR,
+ CAALR,

A,B,C,Dare

(57)

where policyholder  categories

respectively.

The Figure 9 indicates clearly that the RANGER
algorithms scooped the highest value for the ACAALR
which still places it to remain the best model among the
eight machine learning algorithms employed in the study.
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Figure 9. Aggregate Comprehensive Automated Actuarial
Loss Reserves contribution by each ML-method.

5.9. Ultimate ratios for Comprehensive
Automated Actuarial Loss Reserves

These were calculated by obtaining the quotient
between the respective machine learning CAALR by
corresponding ACAALR the results were presented on
the Table A9. The Figure 10 then compliments the results
on Table A9.

GLM

50.00%,
45.00%
40.00%
ANN GAM
y 35.00%
30.009
25.00%
o

20.00%,%
15.00%
10.00%

5.00%

svm 0.00% @ s » RPART

h \ / RANGER

XGB

—e—CategoryA —e—CategoryB —s—CategoryC —s—Category D

Figure 10. Ultimate ratios for CAALR by each ML-Method.

The Figure 10 shows the computed allocation of
reserves for each policyholder categories, which also
aligns with the proposed policyholder loss reserve
category allocations proposed and shown by Table 5 in
the methodology section.

5.10. The number of policyholders and their
associated proportions

The number of policyholders in their respective loss
reserving categories is shown below respectively. The
Table 12 shows the number of policyholders (which is
also our sample size).

Table 12. The number of policyholders and their
associated proportions in the general insurance

company.
The number of policyholders and their associated proportions in the general insurance
company
Category Allocation Number of Policyholders

A 50% 20,000.00
B 30% 12,000.00
C 20% 8,000.00
D 0% 0.00

Sample size 100% 40,000.00

with regards to their policyholder categories and their
estimated proportions also revealed by the ultimate ratios
(50%) for Category A (Both policies), (30%) for Category
B (Car Insurance policies) and lastly (20%) for Category
C (Microfinance policies). These ultimate ratios were
multiplied by the sample size to get respective policies
which are fully in force. From Table 12 Category A
carried many policyholders in force (20,000), followed by
Category B (12,000) and finally the least being Category
C (8,000).

5.11. Distribution of Aggregate Comprehensive
Automated Actuarial Loss Reserves by
proportions of the policyholders in their
categories

The computed ACAALR were then distributed
according to the proportions in Table 12 occupied by each
policyholder category per each machine learning
algorithm. When this is implemented, the results obtained
are the Comprehensive Automated Actuarial Loss
Reserves (CAALR) also presented on the Appendix
section, see Table A7 which has been explicitly presented
below as Table 13.
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Table 13. Distribution of Aggregate Comprehensive
Automated Actuarial Loss Reserves by proportions of the

policyholders in their categories.
Distribution of ACAALR into Policyholder Reserving categories

ML Model Total Both policies  Car Insurance policies M.ic-roﬁnance
ACAALLR Reserves Reserve policiesReserve

GLM 3,200,985.05 1,600,492.53 960,295.52 640,197.01
GAM  3,195,537.58 1,597,768.79 958,661.27 639,107.52
RPART  3,199,968.58 1,599,984.29 959,990.57 639,993.72

RANGER 12,804,873.60 6,402,436.80 3,841,462.08 2,560,974.72
XGB 3,200,773.63 1,600,386.82 960,232.09 640,154.73
LAR 3,202,718.68 1,601,359.34 960,815.60 640,543.74
SVM 1,674,997.35 837,498.68 502,499.21 334,999.47

ANN 1,496,441.39 748,220.70 448,932.42 299,288.28

The Table 13 presents the distribution of Aggregate
Comprehensive Automated Actuarial Loss Reserves
(ACAALR) across different machine learning (ML)
models. It shows the total ACAALR and its allocation
among three types of insurance policies: both policies
combined, car insurance policies, and microfinance
policies. RANGER shows the highest total ACAALR
allocation at $12,804,873.60, significantly higher than
other models. This suggests that the RANGER model
estimates the highest overall loss reserves. SVM and ANN
have the lowest total ACAALR allocations,
$1,674,997.35 and $1,496,441.39, respectively. This
indicates that these models estimate the lowest overall
loss reserves. GLM, GAM, XGB, and LAR models
exhibit similar distributions for the three types of reserves.
Each of these models allocates about half of the total
ACAALR to both policies combined, approximately one-
third to car insurance policies, and about one-sixth to
microfinance policies. RANGER allocates a larger
proportion to both policies combined ($6,402,436.80),
with significant allocations to car insurance policies
($3,841,462.08) and microfinance policies
($2,560,974.72). This model suggests a larger focus on
combined policies, possibly due to its extensive data
handling. SVM and ANN models allocate a smaller total
amount of ACAALR but with a relatively similar
proportionate distribution across the three policy types.
SVM allocates $837,498.68 to both policies combined,
$502,499.21 to car insurance, and $334,999.47 to
microfinance policies. ANN allocates $748,220.70 to
both policies combined, $448,932.42 to car insurance, and
$299,288.28 to microfinance policies.

5.12. Assumptions for the Automated Actuarial
Loss Reserving Model

— The moment a policyholder takes the policy he/she
receives the base bonus rates shown on the Table
6.

— The CAALRs are compounded over n period of
time to forecast their respective accumulated value
using final bonus rates

— n can be number of days, number of weeks,
number of months and or number of years,
however in this study, nrepresents the number of
years.

— The number of comprehensive payments is greater
than the number of comprehensive claims

— The frequency, Severity and inflation rates are
constant over n

— The lapse rates are constant

— The expenses and outgo are constant over n

— Random Forest (RANGER) being the best model
machine learning model in the study has been used
for IFRS17 model compliance as well as model
evaluation

5.13. Model Evaluation based on the short-term
and long-term periods

Next, let us proceed to both test and validate the
obtained automated actuarial loss reserves with regards to
two major time-based scenarios indicated below on
Equation (58).

STP for Year 1,...,10,

TBME = {LTP otherwise.

(5%)

where:

— TBME-Time Based Model Evaluation
—  STP-Short Term Period
— LTP-Long-Term Period

5.13.1. Short Term Policyholder category-based
Loss Reserve based Model evaluation

The Comprehensive Automated Actuarial Loss
Reserves (CAALR) can be computed and predicted using
the Net Present Value (NPV) and Accumulated Values
(ACV) for the first 10 years, incorporating the Final

Bonus rates (Fp).
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CAALR = NPV(F,, Years =1,...,10)

+ACV(F,, Years = 1,..,10) 7

where:

— CAALR: Denotes the Comprehensive Automated
Actuarial Loss Reserves.

— NPV: Represents the Net Present Value.

— ACV: Represents the Accumulated Values.

— Fy: Denotes the Final Bonus rates.

—  Years =1, ..., 10: Specifies the period over which
the calculations are made (the first 10 years).

—  Sum of NPV and ACV: Indicates that both Net
Present Value and Accumulated Values are
computed for the given period and combined to
determine the CAALR.

This notation assumes that both NPV and ACV are
functions of the Final Bonus rates and the period
considered.

Table 14. Automated Actuarial Loss Reserve
Model Evaluation for first 10 years.

Automated Actuarial Loss Reserve Model Evaluation for first 10 years

Category A Category B Category C

Year ACV NPV ACV NPV ACV NPV

1 6,722,558.64 6,097,558.86 4,033,535.18 3,658,535.31 2,689,023.46 2,439,023.54
7,058,686.57 5,807,198.91 4,235,211.94 3,484,319.35 2,823,474.63 2,322,879.56
7,411,620.90 5,530,665.63 4,446,972.54 3,318,399.38 2,964,648.36 2,212,266.25
7,782,201.95 5,267,300.60 4,669,321.17 3,160,380.36 3,112,880.78 2,106,920.24
8,171,312.04 5,016,476.76 4,902,787.23 3,009,886.06 3,268,524.82 2,006,590.70
8,579,877.65 4,777,596.92 5,147,926.59 2,866,558.15 3,431,951.06 1,911,038.77
9,008,871.53 4,550,092.30 5,405,322.92 2,730,055.38 3,603,548.61 1,820,036.92
9,459,315.10 4,333,421.24 5,675,589.06 2,600,052.74 3,783,726.04 1,733,368.50
9,932,280.86 4,127,067.85 5,959,368.52 2,476,240.71 3,972,912.34 1,650,827.14
10,428,894.90 3,930,540.81 6,257,336.94 2,358,324.48 4,171,557.96 1,572,216.32

O 00 N N kR W

S

The Table 14 evaluates the performance of the
Automated Actuarial Loss Reserve (AALR) models over
the first 10 years for different policyholder categories,
namely A, B, and C. It provides metrics for both
Accumulated Values (ACV) and Net Present Value
(NPV).

With respect to Category A: the ACV increases
steadily from $6,722,558.64 in Year 1 to $10,428,894.90
in Year 10. The NPV starts at $6,097,558.86 in Year 1 and
decreases to $3,930,540.81 in Year 10. ACV generally
increases each year, reflecting the growth in accumulated
reserves. NPV, however, decreases, indicating that the
value of future reserves, when discounted to the present,
is declining. With respect to Category B: ACV rises from
$4,033,535.18 in Year 1 to $6,257,336.94 in Year
10.NPV also starts at $3,658,535.31 and decreases to

$2,358,324.48 by Year 10. Similar to Category A, ACV
increases over time while NPV decreases, showing the
growing value of reserves and a reduction in their present
value. With respect to Category C: The ACV increases
from $2,689,023.46 in Year 1 to $4,171,557.96 in Year
10.NPV begins at $2,439,023.54 and decreases to
$1,572,216.32 by Year 10. Both ACV and NPV follow
the same trend as in Categories A and B, with increasing
ACYV and decreasing NPV over time.

In all categories, the Accumulated Values grow over
the 10-year period, indicating a consistent increase in
reserves. The Net Present Value decreases across all
categories, suggesting that while the total reserves are
increasing, the present value of these future reserves
diminishes over time due to discounting. Category A has
the highest values for both ACV and NPV throughout the
10 years, indicating it has the highest reserve amounts and
present values. Category B follows, with Category C
having the lowest values in comparison. This table
provides insights into how the reserves are projected to
evolve over time for different policyholder categories,
highlighting differences in both the accumulated and
present value of these reserves.

5.13.2. Short Term Accumulated Values of
Policyholder category-based Loss Reserves

Figures 11, 12, and 13 shows that the accumulated
values for CAALR are increasing exponentially for the
first 10 years. This is a sign of financial strength to the
insurer and it presents an opportunity for continued
growth through comprehensive claim settlement within a
short space of time.
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Figure 11. Predicted Short term ACV for CAALR FOR
Category A.
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Figure 12. Predicted Short term ACV for CAALR FOR
Category B.
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Figure 13. Predicted Short term ACV for CAALR FOR
Category C.

5.13.3. Short Term Period (STP) model evaluation
with regards to Net Present Values of
Policyholder Reserves

The STP model evaluation with regards to NPVs of
policyholder reserves provides valuable insights into the
financial implications of insurance policies in the short
term, helping insurers make sound business decisions and
manage their financial risks effectively.

Figures 14, 15, and 16 shows that their net present
values for CAALR are increasing slowly over the ten
years. In addition to that, they are still positive and large
as also shown by Table 14. This shows that in the short-
term period of time, the insurer is capable of meeting all
future liabilities with claims included across all the three
main policyholder categories.
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Figure 14. Predicted Short term NPV for CAALR for
Category A.
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Figure 15. Predicted Short term NPV for CAALR for
Category B.
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Figure 16. Predicted Short term NPV for CAALR for
Category C.

5.14. Long-Term Based Model Evaluation

The Long-Term Period model evaluation is a method
used in insurance and actuarial science to assess the
adequacy of policyholder reserves over an extended
period, typically spanning several years into the future.
This evaluation is crucial for insurance companies to
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ensure they have sufficient funds to meet their future
obligations to policyholders. By evaluating the NPV of
Policyholder Reserves within the Long-Term Period
model framework, insurance companies can gain insights
into their financial health, ensure they have adequate
reserves to fulfill future obligations, and make informed
decisions regarding pricing, underwriting, and investment
strategies. Anytime beyond the first 10 years, has been
regarded as long-term period, see Equation (58).

Table 15 evaluates the performance of the Automated
Actuarial Loss Reserve (AALR) model over a long-term
period of 30 years for different policyholder categories,
specifically A, B, and C. It provides the metrics for both
Accumulated Values (ACV) and Net Present Value
(NPV) over this extended time horizon. For each
category, the table shows the ACV and NPV for each year
from Year 11 to Year 30. The table spans from year 11 to
year 30, covering the long-term evaluation period.

Table 15. Long Term Based Automated Actuarial Loss

Reserve Model Evaluation.

Long Term Based Automated Actuarial Loss Reserve Model Evaluation

Category A
Yeari ACV NPV ACV NPV
11 10,950,339.65 3,743,372.20 6,570,203.79 2,246,023.32 4,380,135.86 1,497,348.88
12 11,497,856.63 3,565,116.38 6,898,713.98 2,139,069.83 4,599,142.65 1,426,046.55
13 12,072,749.46 3,395,348.93 7,243,649.68 2,037,209.36 4,829,099.78 1,358,139.57
14 12,676,386.93 3,233,665.65 7,605,832.16 1,940,199.39 5,070,554.77 1,293,466.26
15 13,310,206.28 3,079,681.57 7,986,123.77 1,847,808.94 5,324,082.51 1,231,872.63
16 13,975,716.59 2,933,030.07 8,385,429.96 1,759,818.04 5,590,286.64 1,173,212.03
17 14,674,502.42 2,793,361.97 8,804,701.45 1,676,017.18 5,869,800.97 1,117,344.79
18 15,408,227.55 2,660,344.73 9,244,936.53 1,596,206.84 6,163,291.02 1,064,137.89
19 16,178,638.92 2,533,661.65 9,707,183.35 1,520,196.99 6,471,455.57 1,013,464.66
20 16,987,570.87 2,413,011.09 10,192,542.52 1,447,806.66 6,795,028.35 965,204.44
21 17,836,949.41 2,298,105.80 10,702,169.65 1,378,863.48 7,134,779.76 919,242.32
22 18,728,796.88 2,188,672.1911,237,278.13 1,313,203.32 7,491,518.75 875,468.88
23 19,665,236.73 2,084,449.71 11,799,142.04 1,250,669.83 7,866,094.69 833,779.88
24 20,648,498.56 1,985,190.20 12,389,099.141,191,114.12 8,259,399.43 794,076.08
25 21,680,923.49 1,890,657.33 13,008,554.09 1,134,394.40 8,672,369.40 756,262.93
26 22,764,969.67 1,800,626.03 13,658,981.80 1,080,375.62 9,105,987.87 720,250.41
27 23,903,218.15 1,714,881.93 14,341,930.89 1,028,929.16 9,561,287.26 685,952.77
28 25,098,379.06 1,633,220.89 15,059,027.43 979,932.53 10,039,351.62 653,288.36
29 26,353,298.01 1,555,448.4715,811,978.81 933,269.08 10,541,319.20 622,179.39
30 27,670,962.91 1,481,379.49 16,602,577.75 888,827.70 11,068,385.16 592,551.80

Category B Category C

ACV NPV

With regards to Category A: ACV starts at
$10,950,339.65 in Year 11 and increases to
$27,670,962.91 by Year 30. This shows a steady rise in
accumulated reserves over time. NPV begins at
$3,743,372.20 in Year 11 and decreases to $1,481,379.49

by Year 30. This decline indicates that while the total

reserves are growing, their present value is decreasing due
to discounting over time. ACV increases consistently,
reflecting a growing reserve base. NPV decreases,
showing the reduction in present value as time progresses.
With regards to Category B: ACV rises from
$6,570,203.79 in Year 11 to $16,602,577.75 in Year
30.NPV starts at $2,246,023.32 and decreases to
$888,827.70 by Year 30. Similar to Category A, ACV
shows a steady increase while NPV shows a decreasing
trend, indicating a growing reserve base but diminishing
present value over time. With regards to Category C:
ACV increases from $4,380,135.86 in Year 11 to
$11,068,385.16 in Year 30. NPV starts at $1,497,348.88
and declines to $592,551.80 by Year 30. ACV increases
steadily, and NPV decreases, reflecting the same trends as
seen in Categories A and B.

Across all categories, the Accumulated Values
increase year by year, indicating a steady accumulation of
reserves over the long-term period. The Net Present Value
decreases consistently across all categories, reflecting the
diminishing present value of future reserves due to
discounting over time. Category A shows the highest
values for both ACV and NPV, indicating it has the largest
reserve amounts and present values. Category B follows,
with Category C having the lowest values in comparison.
This table provides insights into the long-term projections
of reserves for different policyholder categories, showing
how the accumulated and present values evolve over an
extended period.

5.14.1. Long-Term Period model evaluation with
regards to Accumulated Values of
Policyholder Reserves

The Long-Term Period (LTP) model evaluation with
regards to Accumulated Values of Policyholder Reserves
focuses on assessing the financial performance and
stability of insurance policies over an extended period,
typically spanning multiple years or even decades.

In short, the Long-Term Period model evaluation with
regards to Accumulated Values of Policyholder Reserves
provides valuable insights into the long-term financial
sustainability and viability of insurance policies, guiding
insurers in making informed decisions and managing their
risks effectively over time.

This is complimented by the Figures presented below.
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both underwrite and settle all comprehensive claims both
in short and long periods of time.
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Figure 19. Predicted Long term ACV for CAALR for

Figure 21. Predicted Long term NPV for CAALR for
Category C.

Category B.
Figures 17, 18, and 19, shows that the accumulated

values for policyholder reserves are trending upwards

over the defined long periods of time. This shows that the

insure still maintains both the capability and capacity to
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5.15. Actuarial Science Based IFRS17 Analysis
based on the Best Model:(Ranger)

5.15.1. Visualizing Automated Actuarial Loss
Reserves

The Figure 23 histogram displays the frequency
distribution of the Automated Actuarial Loss Reserves.
Each bar represents the count of observations falling
within specific ranges of loss reserves.
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Figure 23. Automated Actuarial Loss Reserves.

IFRS 17 requires insurance companies to have
accurate and transparent reserves. The Figure 23 shows
that the automated actuarial solutions are providing
realistic and robust estimates. Understanding the
distribution of predicted reserves as presented in the
Figure 21 helps in better risk management. In short, the

Figure provides valuable insights into the predicted loss
reserves and help evaluate the effectiveness of the Al-
driven model. They illustrate the distribution’s central
tendency, variability, and any potential outliers, which are
critical for ensuring that the actuarial models align with
IFRS 17 requirements and effectively manage insurance
risk. By interpreting these visualizations, actuaries and
data scientists can assess and enhance their predictive
models, leading to more accurate financial reporting and
better risk management.

5.16. Comparison Between the with Ranger based
Automated Actuarial Loss Reserving Model
and the Traditional Chain Ladder model

The Figure 24 generally shows a graphical
representation of the claim’s triangle data. This plot helps

visualize the pattern of claims development.
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Figure 24. Plot of simulated claims triangle data.

The Table 16 provides a comparison of loss reserve
estimates from two different methods. RANGER AALR
Method shows a significantly higher loss reserve estimate
compared to the Chain Ladder Method. This might
suggest that the RANGER AALR Method is more
conservative or accounts for more uncertainty in future
claims, potentially providing a more robust safety margin.
Higher reserves can be advantageous in terms of ensuring
that there are sufficient funds to cover future claims,
reducing the risk of underestimating the required reserves.

Table 16. Comparison of Loss Reserve Estimates.

Method Loss Reserves
Chain Ladder Method 164959820.82
RANGER AALR Method 824152786.31
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Figure 25. Comparison between Ranger based AALR and
Chain ladder reserves.

In risk management and insurance, having higher
reserves as complimented by the Figure 25 can be
indicative of a method that incorporates more
comprehensive risk factors. The RANGER AALR
Method’s higher reserve reflects its capacity to better
account for potential variations and uncertainties in loss
development, prudent financial
management.

leading to more

5.17. Adherence of the Ranger model to IFRS17
Regulations

The Automated Actuarial Loss Reserves (ALR) are
calculated by combining predictions for claim frequency
(F), claim severity (S), and inflation (I). Mathematically,
this is expressed as:

ALR=FxSxT (60)
where:

—  F represents the predicted claim frequency,
— S denotes the predicted claim severity,
— [ indicates the predicted inflation rate.

Future cash flows (FCF) are projected by adjusting the
loss reserves for expected inflation. The formula for future
cash flows is:

FCF = ALR x (1 +1) (61)

To reflect the time value of money, future cash flows
are discounted to their present value (PVFCF) using a
discount rate (r):

FCF

(62)

where:

— 1 18 the discount rate,
— tis the time period.

The Contractual Service Margin (CSM) represents the
unearned profit component of the insurance contracts. It
is computed as:

CSM = ALR - PVFCF (63)

This equation captures the difference between the total
estimated reserves and the discounted value of future cash
flows, reflecting the profit yet to be recognized.

The histogram of ALR presented by the Figure 26
provides insight into the distribution of loss reserve
estimates. A well-distributed histogram implies that the
model accounts for a range of possible future claims,
adhering to the IFRS 17 requirement for robust reserve
estimates. The histogram of CSM denoted by the Figure
27 shows the distribution of the unearned profit margins.
A reasonable range of CSM values indicates proper
recognition of profit margins, consistent with IFRS 17’s
profit recognition requirements. The histogram of PVFCF
presented by the Figure 28 illustrates the distribution of
discounted cash flows. The application of discounting
reflects compliance with IFRS 17’s requirements for the
time value of money.

Histogram of Automated Actuarial Loss Reserves
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Figure 26. Histogram of Automated Actuarial Loss Reserves.
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Histogram of Contractual Service Margin (CSM)

Freguency

o
[=]

0 i e

(5]

-6 -4 -2 0
Contractual Service Margin (CSM)

Figure 27. Histogram of Contractual Service Margin (CSM).

Histogram of Discounted Future Cash Flows

Frequency

100 200 300
Discounted Cash Flows

Figure 28. Histogram of Discounted Future Cash Flows
(PVFCF).

The developed metrics—Automated Actuarial Loss
Reserves, Future Cash Flows, and Contractual Service
Margin—along with their respective histograms,
demonstrate adherence to IFRS 17 regulations. The
mathematical expressions wused ensure that the
calculations align with the standard’s requirements for
best estimates, profit recognition, and time value of
money.

5.18. Model Evaluation

Model evaluation in the context of robust model
testing, stress model testing, and scenario model testing
involves assessing the performance and reliability of

models under various conditions. Each type of testing
addresses different aspects of the Ranger model
performance, providing insights into how models behave
under normal and extreme circumstances.

5.18.1. Robust Model Testing

Robust model testing evaluates how well a model
performs under various perturbations and uncertainties
and the primary aim is to assess the model’s stability and
reliability when faced with minor changes in input data or
model parameters. This type of testing ensures that the
model’s predictions remain consistent and reliable despite
small fluctuations in inputs or underlying assumptions
[30], [31].

Density Plat of Automated Actuarial Loss Reserves

Summary Statistics of Loss Reserves

Figure 29. Robust model testing plot.

The Figure 29 overlays the density curves of the
and perturbed Automated Actuarial Loss
Reserves. The blue curve represents the original reserves,
while the red curve represents perturbed reserves (small

original

noise adjustments or stress testing). The nearly identical
shape of both curves suggests that the model predictions
are robust, even when the input data is perturbed. The
smooth transition between the two indicates minimal
sensitivity to perturbations, which is important for IFRS
17 as it reflects stability under scenario testing and small
changes in assumptions. On the same note the Figure 29
shows a bar plot with error bars representing the mean
reserve and standard deviation for both the original (blue)
and perturbed (red) reserves. The similarity between the
means and standard deviations further confirms the
robustness of the model. A minimal shift between the
original and perturbed data ensures that the model is
stable, a key requirement under IFRS 17 for predictable
loss reserving. Consistency between original and
perturbed reserves reflects the reliability of the model in
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managing different inputs, crucial for meeting IFRS 17’s
requirement of fair value assessments.

5.18.2. Stress Model Testing

Stress model testing assesses how models perform
under extreme conditions or when exposed to unusual but
plausible scenarios and this testing is crucial for
understanding the limits of a model and identifying
potential vulnerabilities that could lead to failures under
high-stress conditions [32], [33].

Automated Actuarial Loss Reserves undr Different Scenarios

T

Figure 30. Stress model testing plot.

The Figure 30 shows a box plot comparing Automated
Actuarial Loss Reserves across various scenarios. The
spread of each box plot reveals the variance in reserves
under different shock scenarios. Despite changes in
frequency, inflation, or severity, the distribution remains
relatively stable. There are minimal extreme outliers,
demonstrating that the model is resistant to abnormal
shifts, further enhancing its robustness. Under IFRS 17,
insurance companies are expected to assess future
liabilities under varying economic conditions. The
relatively stable median and spread across scenarios align
with this by showing the model’s capability to handle
fluctuating market and claim variables effectively.

5.18.3. Scenario Model Testing

Scenario model testing involves evaluating how a
model performs across various hypothetical situations or
future scenarios and this approach helps in understanding
the model’s robustness and adaptability in response to
different sets of assumptions or potential
developments [34], [35].

future

Automat ed Actuarial Loss Reserves: Original vs Adjusted

Scenain

Figure 31. Scenario testing plot.

The Figure 31 presents a stacked bar plot showing
original (blue) vs. adjusted (red) Automated Actuarial
Loss Reserves across 10 different scenarios. Across all
scenarios, the adjusted reserves (red) consistently lie
above or close to the original reserves (blue), indicating
that the model provides a stable buffer for reserve
adjustments. This demonstrates the model’s ability to
adjust for future estimates, ensuring accurate loss
reserving, a requirement of IFRS 17’s focus on contract
service margins (CSM). On the same note, the Figure 31
shows a line plot that shows the impact of different
parameters (frequency, inflation, severity) on the adjusted
values across scenarios. This plot visually highlights how
different factors (frequency, inflation, severity) contribute
to reserve adjustments across scenarios. The limited
volatility suggests the model appropriately weights each
parameter, ensuring robustness. Consistent adjustments
are essential under IFRS 17 to reflect real-time changes in
expected claims and liabilities. This graph demonstrates
that the model adheres to this principle by providing
reliable reserve estimates across varying conditions.

The visualizations exhibited by the Figures 29, 30 and
31 collectively demonstrate the robustness of the Ranger
algorithm in estimating Automated Actuarial Loss
Reserves. The stability under different perturbations,
scenarios, and parameter adjustments ensures the model’s
reliability. The model’s adherence to stable reserve
estimations under various economic conditions and stress
testing shows strong alignment with IFRS 17
requirements, including transparency, predictability, and
fair value assessments for insurance contracts
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6. Discussion

The integration of Al techniques into actuarial loss
reserving represents a notable advancement in actuarial
science, blending the strengths of data science with
traditional actuarial practices. Our findings reveal that Al-
driven models, including neural networks and random
forests, substantially outperform traditional actuarial
methods in both accuracy and efficiency. This
enhancement is particularly evident in the improved
precision of loss reserve estimates and the reduced
computational time required for model processing, which
significantly streamlines the reserving process.

The introduction of the Robust Automated Actuarial
Loss Reserve Margin (RAALRM) marks a significant
reserve adequacy. By
incorporating both upper and lower bounds, the
RAALRM offers a more nuanced view of reserve

innovation in evaluating

requirements. This approach not only addresses the
limitations of traditional reserve margin calculations—
such as the lack of comprehensive variability
assessment—but also provides a more robust framework
for understanding potential fluctuations in loss reserves.
The integration of the RAALRM with frequency,
severity, and inflation models enhances the overall
accuracy and reliability of actuarial forecasts.Our study
also presents a novel policyholder-centric reserve
allocation framework. By categorizing policyholders into
distinct groups and tailoring reserve allocations based on
these categories, the framework ensures that reserves are
more accurately aligned with the actual risk profiles of
policyholders. This tailored approach, coupled with the
detailed bonus rate system, promotes fairness and
optimizes the use of available reserves. The dynamic
adjustment of bonus rates based on claims experience
further refines the alignment of reserves with policyholder
risk, enhancing the effectiveness of reserve management
practices.

Additionally, the methodology’s incorporation of
qualitative insights from industry experts provides a well-
rounded perspective on the practical benefits and
challenges of implementing Al-driven solutions in real-
world scenarios. These insights emphasize the importance
of ongoing collaboration between actuaries and data
scientists to maximize the potential of Al technologies in
actuarial science. The rigorous validation techniques
employed—such as robustness and stress testing, scenario

analysis, and the comparison with traditional methods like
the Chain Ladder model—underscore the comprehensive
nature of the study. These techniques not only validate the
performance and stability of Al-driven models but also
ensure that the proposed solutions are resilient under
various market conditions and stress scenarios.

In a nutshell, this study highlights the transformative
potential of Al in actuarial loss reserving. By bridging
traditional actuarial methods with advanced machine
learning techniques, it offers a forward-looking approach
to managing and predicting loss reserves. The findings
suggest that Al-driven models not only enhance
predictive accuracy and efficiency but also provide a more
detailed and adaptable framework for loss reserving in the
insurance industry. Continued exploration and application
of these methods will be crucial for advancing actuarial
science and addressing the evolving needs of the industry.

7. Conclusion

This study significantly advances actuarial science by
integrating Al into automated loss reserving, offering a
more accurate, efficient, and adaptive alternative to
traditional methods. The research’s primary contributions
lie in the development of a comprehensive Al-driven
framework that accurately models loss reserving through
advanced techniques for frequency, severity, and inflation
estimation. These innovations surpass the limitations of
traditional actuarial methods, which often rely on
historical trends and deterministic assumptions, by
utilizing machine learning’s ability to capture complex
relationships and adapt to new data patterns.

The proposed framework aligns closely with IFRS 17
standards, demonstrating not only its compliance with
regulatory requirements but also its practical applicability
for real-world implementation. Our study confirms that
Al-driven models provide superior predictive accuracy,
particularly in estimating reserves across diverse
categories, and allow for a more detailed analysis of risk
factors. This is wvalidated through rigorous testing
methodologies, including robustness checks, stress
testing, and scenario analysis, ensuring the reliability and
robustness of the model for use in the insurance industry.
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7.1. Key findings of the study

Enhanced Predictive Accuracy: The use of Al
particularly through the Random Forest (RANGER)
algorithm, enables more precise estimations of loss
reserves, capturing non-linear patterns in frequency,
severity, and inflation data that traditional methods often
overlook.

Operational Efficiency: Automation of the reserving
process reduces manual effort, speeds up decision-
making, and allows insurers to react more quickly to
changes in market dynamics and regulatory demands.

Comprehensive Reserve Adequacy: The introduction
of the Robust Automated Actuarial Loss Reserve Margin
(RAALRM) offers a more dynamic and flexible
assessment of reserve adequacy, moving beyond the static
calculations of traditional methods.

Practical Application and Compliance: The model’s
alignment with IFRS 17 underscores its readiness for
practical application, ensuring compliance with modern
accounting standards and providing a scalable solution for
insurers.

7.2. Future Research Directions

Building upon the findings of this study, several
potential areas for future research emerge:

— Algorithm Development: Future studies could
explore the integration of more advanced machine
learning algorithms, such as deep learning models
and ensemble techniques, to further improve
predictive accuracy and capture complex
dependencies within the data.

—  Use of Real-World Data: Implementing the model
with real data from insurance companies would
provide a more comprehensive validation of its
accuracy and applicability. Collaborations with
insurers could facilitate access to diverse datasets,
enabling further refinement of the model’s
predictive capabilities.

of Alternative Al Techniques:

Research could investigate the potential of

unsupervised learning methods, such as clustering

and anomaly detection, to identify emerging
patterns in claims data and detect early signs of

changing risk dynamics.

—  Exploration

and  Multi-Period  Analysis:
Extending the model to perform multi-period
reserving projections could offer insights into
long-term reserve adequacy and help insurers
anticipate future changes in reserve needs.

—  Longitudinal

7.3. Model Improvements and Broader
Applications

While the proposed model demonstrates considerable
advantages, there are several areas where enhancements
could be made:

to Different Market
Segments: Future research could tailor the Al-
driven framework to different lines of business

—  Adaptation Insurance

within non-life insurance, such as health, property,
or marine insurance. Each segment presents
unique challenges, and modifying the model to
account for distinct risk profiles could broaden its
applicability.

— Integration with Advanced Predictive Tools:
Incorporating advanced tools like Bayesian
networks for probabilistic reasoning or fuzzy logic
systems to handle uncertainties could refine the
model’s predictive accuracy further, particularly
in environments with limited or highly variable
data.

— User-Friendly Interfaces and Implementation:
Developing  user-friendly  interfaces  and
visualization tools for model outputs could make
the Al-driven reserving approach more accessible
to practitioners, promoting its adoption in the
industry.

— Dynamic and Adaptive Premium Pricing: The
model could be adapted to inform premium pricing
strategies dynamically, integrating real-time data
for more responsive and accurate pricing

adjustments that align with shifts in risk factors

and market conditions.

In a nutshell, this research demonstrates the
transformative impact of Al-driven solutions on actuarial
reserving practices, moving beyond the limitations of
traditional methods to establish a more accurate,
compliant, and dynamic framework. By bridging the gap
between conventional actuarial techniques and advanced
machine learning approaches, this study sets a new
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benchmark in the field and provides a foundation for
future innovation in non-life insurance. As insurers
continue to face an evolving landscape of risks and
regulatory expectations, the proposed Al-driven model
offers a promising direction for achieving greater
precision, efficiency, and adaptability in loss reserving.
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Appendix A Table AS5. AALR REOPENED Reserves.
Automated Actuarial Loss Reserving -Total REOPENED Reserves
ML Model REOPENED-A REOPENED-B REOPENED-C REOPENED-D

Table Al. Machine Learning Algorithms, Associated R

N JH GLM 64,019.70 38,411.82 25,607.88 0.00
packages and Hyper-parameters. GAM 63,910.75 38,346.45 25,564.30 0.00
Machine learning Algorithm R Pzi‘;ges Hyperparameters RPART 63,999.35 38,399.61 25,599.74 0.00
Generalized Linear Models (GLM) glm? fan;lllc)l; dlts.trll.n;gont:' Gaussian, RANGER 256,097.45 153,658.47 102,438.98 0.00
- — Ink function: Identity XGB 64,015.45 38,409.27 25,606.18 0.00
Generalized Additive Models family distribution: Gaussian,
(GAM) gam Jink function: Identity LAR 64,054.35 38,432.61 25,621.74 0.00
Regression Trees (RPART) Rpart No hyperparameters used SVM 33,499.94 20,099.96 13,399.98 0.00
Random Forest (RANGER) Ranger | Pumber of trees:500, Mtry:8, ANN 29,928.84 17,957.30 11,971.53 0.00
Target node size: 5
Extreme Gradient Boosting Xeboost xgboost maximum depth: 3,
(XGB) g number of rounds: 100
Least Angle Regression (LAR) Caret Method:lars Table A6. AALR REINSURANCE Reserves.
Support Vector Machines E10171 SVM—TypeS:\sly\); _K L
(SVMM) ;Zﬁ;zlssclg;" 1 -xernet: Automated Actuarial Loss Reserving -Total REINSURANCE Reserves
2 . REINSURANCE- REINSURANCE- REINSURANCE-
ize: :Se- i ML Model REINSURANCE-D
Artificial Neural Network (ANN) nnet lstlezl;tlz‘;fse;%}(l) Se-4, maximum ode A B C
- GLM 16,004.93 9,602.96 6,401.97 0.00
GAM 15,977.69 9,586.61 6,391.08 0.00
RPART 15,999.84 9,599.90 6,399.94 0.00
Table A2. AALR Total Reserves. RANGER 64,0243 38.414.61 25,609.74 0.00
Automated Actuarial Loss Reserving -Total Reserves XGB 16,003.87 9,602.32 6,401.55 0.00
ML Model IBNYR RBNYS REOPENED REINSURANCE LAR 16,013.59 9,608.15 6,405.44 0.00
GLM 2,560,788.00 480,147.80 128,039.40 32,009.85 SVM 8,374.99 5,024.99 3,349.99 0.00
GAM 2,556,430.00 479,330.70 127,821.50 31,955.38 ANN 148221 448933 299288 040
RPART 2,559,975.00 479,995.20 127,998.70 31,999.68
RANGER  10,243,899.00  1,920,731.00  512,194.90 128,048.70 Table A7. AALR COMPREEHENSIVE Reserves.
XGB 2,560,619.00 480,116.00 128,030.90 32,007.73 Automated  Actuarial Loss  Reserving -T otal COMPREHENSIVE Reserves
LAR 2,562,175.00 480,407.80 128,108.70 32,027.18 ML Model CAALR-A CAALR-B CAALR-C CAALR-D
SVM 1,339,998.00 251,249.50 66,999.88 16,749.97 GLM 1,600,492.53 960,295.52 640,197.01 0.00
ANN 1,197,153.00 224,466.30 59,857.67 14,964.42 GAM 1,597,768.79 958,661.27 639,107.52 0.00
RPART 1,599,984.29 959,990.57 639,993.72 0.00
RANGER 6,402,436.80 3,841,462.08  2,560,974.72 0.00
Table A3. AALR INBYR Reserves. XGB 1,600,386.82  960,232.09 640,154.73 0.00
Automated Actuarial Loss Reserving -Total IBNYR Reserves LAR 1,601,359.34 960,815.60 640,543.74 0.00
ML Model IBNYR-A IBNYR-B IBNYR-C IBNYR-D SVM 837,498.68 502,499.21 334,999.47 0.00
GLM 1,280,394.00 768,236.40 512,157.60 0.00 ANN 74822070 44893242  299,288.28 0.00
GAM 1,278,215.00 766,929.00 511,286.00 0.00
RPART 1,279,987.50 767,992.50 511,995.00 0.00 Table AS. AALR AGGREGATE ReserVeS.
RANGER 5,121,949.50 3,073,169.70 2,048,779.80 0.00 - -
Actuarial Loss Reserving
XGB 1,280,309.50 768,185.70 512,123.80 0.00 ML Model ACAALR
LAR 1,281,087.50 768,652.50 512,435.00 0.00 GLM 3.200.985.05
SVM 669,999.00 401,999.40 267,999.60 0.00 GAM 3,195,537.58
ANN 598,576.50 359,145.90 239,430.60 0.00 RPART 3,199,968.58
RANGER 12,804,873.60
XGB 3,200,773.63
Table A4. AALR RBNYS Reserves. LAR 3,202,718.68
Automated Actuarial Loss Reserving -Total RBNY'S Reserves SVM 1,674,997.35
ML Model RBNYS-A RBNYS-B RBNYS-C RBNYS-D ANN 1,496,441.39
GLM 240,073.90 144,044.34 96,029.56 0.00
AM 2 . 14 21 .14 .
¢ 3966535 799 92866 000 Table A9. ULTIMATE RATIOS FOR CAALR.
RPART 239,997.60 143,998.56 95,999.04 0.00 Automated Actuarial Loss Reserving -Total Ultimate Ratios
RANGER 960,365.50 576,219.30 384,146.20 0.00 ML Model Category A Category B Category C Category D
XGB 240,058.00 144,034.80 96,023.20 0.00 GLM 50% 30% 20% 0%
LAR 240,203.90 144,122.34 96,081.56 0.00 GAM 50% 30% 20% 0%
SVM 125,624.75 75,374.85 50,249.90 0.00 RPART 50% 30% 20% 0%
0, 0, 0, 0,
ANN 112,233.15 67.339.89 44,893.26 0.00 RANGER 30% 30% 20% 0%
XGB 50% 30% 20% 0%
LAR 50% 30% 20% 0%
SVM 50% 30% 20% 0%
ANN 50% 30% 20% 0%
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