
Science, Engineering and Technology Vol. 5, No. 2, Online First

www.setjournal.com https://doi.org/10.54327/set2025/v5.i2.216

Corresponding author: Mohammedi Taieb Sabir(sabir.mohammeditaieb.etu@univ-mosta.dz)

Received: 30 September 2024; Revised: 29 March 2025; Accepted: 23 April 2025; Published: 15 May 2025

© 2025 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License

Online First

GFEA: Leader Election Algorithm for Choosing a Group Decision

Support System Facilitator

Mohammedi Taieb Sabir1, Laredj Mohamed Adnane1

1Lab CSTL, Mostaganem University, 27000 Mostaganem, Algeria.

Abstract

Group decision support systems (GDSSs) are computer-assisted collaborative work software that facilitates group

meetings asynchronously and from different locations. Even so, collaborative work in GDSS demands coordination

provided by a single controlling entity known as the GDSS facilitator. However, the problem of electing a GDSS

Facilitator hasn’t been treated enough in the literature, and it is often neglected. Despite that, the large number of

responsibilities assigned to the facilitator makes his role crucial to the effectiveness of the group meeting. Thus, the

authors focused on finding an appropriate approach for electing the facilitator. The similarities between the problematics

of electing a GDSS facilitator and a distributed system leader led the authors to consider applying a distributed election

algorithm for electing a GDSS facilitator. Nonetheless, current algorithms only consider computer criteria and lack a

formal weighting method. Consequently, we proposed a new distributed election algorithm called GFEA (GDSS

Facilitator Election Algorithm) that is designed to choose a facilitator within a GDSS. This algorithm selects a facilitator

among a set of decision-makers based on multiple election criteria weighted using an objective weighting method called

MEREC. A backup leader is reserved to replace the leader if he fails, and a new tie-breaking mechanism is proposed.

Moreover, the initiator failure is handled. By adopting distributed system leader election principles, GFEA provides a

robust solution for a decisive GDSS challenge.

Keywords: Leader Election, Distributed Systems, GDSS, Facilitator, Multi-criteria.

1. Introduction

A distributed system is a group of computers or mobile

devices connected through a network. These devices work

together, appearing as a single unit to users, to achieve a

common goal and deliver a service [1]. These systems are

employed in various fields, they are integrated into

banking networks, smart container systems, smart plants,

industry 4.0, IoT, smart cities, and many other application

cases [2]. Coordinating the nodes within the system is the

leader’s responsibility. The system’s leader is responsible

for allocating resources, balancing the load on the

different nodes, coordinating the consensus regarding

replicated data, and handling deadlock situations [3].

GDSS (Group Decision Support System) is a DSS

(Decision Support System) that’s designed to be used by

a group of DMs (Decision Makers), who communicate

using a communication subsystem. It’s a combination of

a group of humans, hardware, and software. The GDSS

enhances the group decision-making process of

organizations [4]. The humans using the GDSS are

grouped into two roles: the DMs and the facilitator [5]. It

is necessary to have a human facilitator within a GDSS

[4]. The traditional decision room is composed of multiple

computers connected using a local network [6].

Nonetheless, it can also be extended to support connecting

DMs who are geographically dispersed through the

internet [7]. One of the DMs is handed an important role

https://creativecommons.org/licenses/by/4.0/

Science, Engineering and Technology Vol. 5, No. 2, Online First

Online First

called the facilitator role. The GDSS facilitator is

responsible for various tasks. He walks the DMs through

the meeting’s agenda and starts the group conversation.

Additionally, the facilitator can bring up new ideas if the

DMs agree with that. Moreover, he can enhance the

performance and effectiveness of the group. Furthermore,

the facilitator helps the DMs use the technologies and do

their tasks. On top of this, he has to clarify the results of

the meeting [8].

Despite the importance and the significant number of

roles assigned to the GDSS facilitator, there hasn’t been

enough attention regarding the selection of a GDSS

facilitator. Consequently, this work is dedicated to

designing a solution for this problematic. This

problematic is formulated using the following questions:

Among the set of DMs, how can we select one of them

and assign him the role of GDSS facilitator? and how are

DMs evaluated to find the most suitable DM for the

facilitator role? Due to the similarities between the

problematic of electing a leader in distributed systems and

the problematic of electing a GDSS facilitator, the

distributed leader election algorithm represents a potential

solution to the problematic of this work. Despite that, the

solution must satisfy five requirements to be suitable for

the problematic at hand. These requirements are:

Consideration of multiple election criteria, inclusion of

human-related criteria, a formal weighting method, a

backup leader, and the ability to handle the failure and

recovery of both the leader and the election initiator.

Among the various election algorithms that have been

suggested in the literature (see Literature Review), some

works integrate some of the required features for electing

a GDSS facilitator. But no algorithm satisfies all the

requirements of this problematic. Additionally, no

distributed election algorithm optimized for this

problematic has been proposed. Moreover, the existing

algorithms are optimized for distributed machines and not

humans. The work in [8] proposes an election algorithm

based on the load and failure rate of the nodes. While this

algorithm involves multiple criteria, it doesn’t consider

any human-related criterion, plus it doesn’t specify a

formal weighting method.

In this paper, a new distributed election algorithm

designed for the GDSS facilitator election is proposed.

The proposed algorithm considers multiple election

criteria, including human experience, while using a proper

weighting method to indicate the importance of each

criterion, thus influencing the final results. Furthermore,

the algorithm elects not only the facilitator but also a

backup leader. Moreover, the GFEA (GDSS Facilitator

Election Algorithm) satisfies all three correctness

properties and adds a new tie-breaking mechanism that

considers the most important criteria instead of just

relying on the UID (Unique Identifier). On top of that, the

algorithm is fault-tolerant and considers the disconnection

of DMs, the leader, and even the initiator. This algorithm

can also be applied to machines by changing the election

criteria according to the problem at hand. This algorithm

allows us to solve the problematic of electing a GDSS

facilitator formally and objectively, that doesn’t involve

subjective parameters. Thus, eliminating biases and

human conflicts that could arise when using a subjective

approach like multi-criteria decision-making methods [9].

The main contributions of the proposed work are as

follows:

- Comparison between recent election algorithms

designed for distributed systems, and spotting

similarities between the problematic of electing a

GDSS facilitator and the problematic of electing a

leader for a distributed system. By exploiting these

similarities, it is demonstrated that the distributed

election algorithms can be effectively adapted to

solve the problematic of electing a GDSS facilitator.

- Proposition of the GFEA algorithm optimized for the

problematic of electing a GDSS facilitator based on

human experience, security, and network

performance criteria.

- Brief comparison between multiple objective

weighting methods.

- Use of the objective weighting method MEREC [10]

to fix the election criteria weights.

- GFEA robustness stems from the integration of

several features like reserving a backup leader,

improved tie-breaking mechanism that prioritizes

criteria, leader recovery, and tolerance to both

initiator and leader failure.

- The three correctness properties are proven to be

satisfied by the proposed election algorithm, and for

the evaluation, GFEA was tested on the collaborative

e-maintenance process.

- Comparison of the proposed algorithm with other

recent algorithms in terms of functionalities,

performance, and results.

Science, Engineering and Technology Vol. 5, No. 2, Online First

Online First

This research paper is organized in the following

manner. The second section compares multiple

distributed election algorithms. The following section

introduces the election criteria obtained using the Delphi

method, and presents the objective weighting method

MEREC used to fix the election criteria weights. The

fourth section gives information about the system model,

including the topology, assumptions, and notations. Next,

the proposed algorithm, GFEA, is detailed in section five.

The algorithm’s complexity is analyzed in Section six.

The seventh section explains the case study of

collaborative e-maintenance on which we tested and

illustrated the execution of GFEA. Additionally, this

section compares different objective weighting methods

and discusses the obtained election results. Furthermore,

GFEA is compared to other related works based on

performance, functionalities, and results. Finally, the

paper is concluded, and future directions are explored.

2. Literature Review

This section reviews multiple leader election

algorithms designed for distributed systems. One of the

newest works is a paper written by Sperling et al. [11],

which proposed an election algorithm designed for

asynchronous distributed systems. This algorithm

presents a new voting procedure called shallow ranked

voting, which allows the processes to vote for two

processes. This algorithm guarantees the privacy of

voters. The votes are encrypted using the CKKS (Cheon,

Kim, Kim, and Song) method, which is a homomorphic

encryption method. Meaning that we can make

approximate calculations on the encrypted data without

having to decrypt it. This hides the identity of the voters

as well as that of the top candidates who are most likely

to win the election. If the primary choice doesn’t win the

election, the secondary choice gets the vote. This is also

used for tie-breaking when two or more processes have

the majority of votes. To break a tie, the process with the

smallest number of votes is eliminated, and its voters’

second choices take its votes. Since the UID is not used to

break the tie, this ensures the privacy of the top

candidates. Nevertheless, this work didn’t consider

multiple election criteria, a backup, or the recovery of the

leader.

Jiang et al. [12] proposed a leader election approach

based on node weight in the case of split-brain, which is a

special case of partitioning when a network is divided into

two partitions only. The election starts when the leader

doesn’t receive a heartbeat signal from the other servers

or finds a node with a higher weight. The weight indicates

the service level of a node. The leader is the one who gets

the majority of votes. The nodes with the minimum

weight will ensure the high availability of the system. This

approach has less unavailable time than detection node-

based and region leader-based approaches. The arbitration

program also uses only 2% of the CPU's full capacity. On

the other hand, the authors didn’t write a formal

algorithm, nor did they analyze the time and message

complexity of their approach.

Luo et al. [13] proposed an algorithm for the election

of the block generator in the consensus mechanism of

DPoS (Delegated Proof of Stake). They modified the

Chang & Roberts ring algorithm by adding Stake Value.

During the election, this value will be multiplied by a

random value. But if the candidate who sent an election

message has already been a leader before. Then, his Stake

Value will be multiplied by zero to ensure equality and

avoid monopoly. Its message complexity is 2n.

Nonetheless, this algorithm doesn’t have a tie-break

mechanism, nor does it consider a backup leader.

Haddar [14] proposed a scalable and energy-aware k-

leaders election algorithm designed for IoT wireless

sensor networks. Election starts from the initiators who

broadcast an election message that helps to create a tree

whose root is the initiator. The initiator receives the

possible leaders of its neighbors and sends a Winner

message to the k-highest weight nodes and a Looser

message to the remaining nodes. The authors compared

their algorithm to the other two top K-leader algorithms

(WiLE and Top-K). Their algorithm gave better results in

the number of messages and bytes transmitted in GRID

and fully connected graph topologies with various

network sizes. The residual energy was almost the same

in the three algorithms. But the authors say their algorithm

also consumes less power due to the reduced number of

exchanged messages. On the other hand, they did not

specify how the weights were calculated for the election

criteria. Instead, they used random weights in the

experiments.

Cahng and Lo [15] proposed a consensus-based leader

election algorithm for wireless Ad Hoc networks, which

is based on Bully and Paxos algorithms. It has a fault

Science, Engineering and Technology Vol. 5, No. 2, Online First

Online First

detection mechanism through finder nodes for detecting if

the leader has left or crashed. The criteria used for election

are residual battery power & node degree. The identifier

is called "Vote" and is calculated based on these two

criteria. The consensus consists of accepting only higher

priority proposals and denying others. The proposed

algorithm’s message complexity is O(n). As future work,

they proposed to ensure message integrity. Despite

considering more than one election criterion, weights

were not assigned.

Raychoudhury et al. [16] proposed an algorithm that

elects the K-highest weighted nodes as leaders in each

connected component of mobile ad hoc networks. The

weight of a node indicates its available resources. There

are 3 types of nodes: White nodes, which are the normal

nodes, Green nodes, which are backups for the Red nodes,

and Red nodes, which are the highest-weight neighbors.

Red nodes are considered as local coordinator nodes in the

sense that they help collect the nodes' weights and forward

them to the highest-weighted red node. The red node with

the highest weight in a connected component is going to

select the top-k nodes based on their weight and elect

them as leaders. This algorithm is fault-tolerant and

message-efficient. It is also designed with topological

changes in mind that could lead to network partitions.

Moreover, it reserves a backup leader in case a red node

crashes. However, this algorithm is based only on one

election criterion, and doesn’t consider the recovery of a

failed leader.

DRLEF (Distributed and Reliable Leader Election

Framework) was proposed in [17] by Elsakaan and

Amroun consists of choosing an authentication server

from a set of gateways. These gateways coordinate the

network of wireless sensors. There are two types of nodes:

Gateways and Sensor Nodes. There will be local elections

in each area of the WSN (Wireless Sensor Network). The

centrality here was measured by the deviation method. If

the deviation exceeds a certain threshold, then the GW

will not participate in the election. The gateway with the

maximum number of GWs as direct neighbors is called

the CGW (Central Gateway). Gateways send candidacy

messages to the CGW. The candidate GWs are ranked

based on the centrality criterion, and the best one is going

to be elected as the leader. The other GWs enter

hibernation mode, they are kept as backups in case the

leader fails. This eliminates the need to redo the election

process. However, the DRLEF algorithm does not

guarantee election in severe mobility circumstances.

Additionally, it doesn’t consider multiple election criteria

or the leader's recovery.

Julian and Marian Jose [18] used the fuzzy analytic

hierarchy process to elect a cluster head in ad hoc

networks. The leader is elected based on his weight. The

node’s weight is calculated based on seven criteria, which

are: node degree, transmission range, mobility, residual

energy, trust value, status of the node, and fairness of the

node. Using this approach has several advantages. First, it

eliminates inconsistencies in selection criteria. Secondly,

the fuzzy variation of AHP removes duplicate weights.

Additionally, it has better performance than the standard

WCA (Weighted Clustering Algorithm). On top of that,

the nodes’ mobility is taken into consideration. Finally,

we obtain a ranking of the nodes from best to worst. In

contrast, the authors didn’t consider the failure of the

leader, the recovery of the failed nodes, or the addition of

new nodes.

Kadjouh et al. [19] presented a dominating tree-based

leader election algorithm (DoTRo) designed for smart

cities IoT networks. It uses the local minima finding

algorithm (MinFind) to discover the local minimum

values within the network. Afterwards, each local

minimum is going to be the root that initiates a spanning

tree. When two spanning trees come in contact, the tree

with the smaller value continues the flooding process

while the other one stops. Next, the local minima will wait

a maximum duration so their flooding processes can end.

After this maximum time, if a local minimum node

doesn’t receive a message, then it becomes the leader.

This algorithm is energy efficient, fault-tolerant, and

reduces the number of sent and received messages when

compared to MinFind. In contrast, this work didn’t deal

with security issues. Besides, no backup leader was

considered, and the election is solely based on one value.

Favier et al. [20] introduced a novel centrality-based

eventual leader election algorithm that works in dynamic

networks. The leader in this algorithm has to be in the

center of the network. Each node knows its neighbors and

the neighbors of its neighbors. A leader is elected in each

component. When a node detects a change in its

neighborhood, it updates its knowledge and emits its new

view of the network. Nonetheless, there are some

drawbacks to this algorithm. Firstly, if the nodes do not

have the same knowledge, then they can choose different

Science, Engineering and Technology Vol. 5, No. 2, Online First

Online First

leaders. Secondly, this algorithm only considers the

criterion of distance between the nodes. In addition, the

size of the messages can be important since each node

uses map structures, and the message must respect the

MTU (Maximum Transmission Unit) of the network

packet. This requires compression algorithms to reduce

the size of the exchanged messages. It is possible to use

collaborative calculations to calculate the centralities and

thus save time. Moreover, this work didn’t take into

account multiple election criteria and leader recovery.

Biswas et al. [3] proposed a new resource-based leader

election algorithm, which selects the leader based on

resource strength. Resource strength is calculated based

on three criteria: CPU, memory, and remaining battery for

mobile nodes. Each node has a queue with all the nodes

present on the system. After that, the queue is sorted in

descending order to place the node with the highest

resource strength at the beginning of the queue and thus

choosing it as the leader. This algorithm also takes into

consideration the addition and removal of nodes from the

system using update messages. However, the authors did

not consider the security aspects of nodes joining the

system. Moreover, the frequent addition and removal of

nodes slow down the system. Plus, no formal weighting

method was specified to determine the importance of each

election criterion.

Another work by Biswas et al. [21] presented a novel

failure rate and load-based leader election algorithm

(FRLLE) for bidirectional ring topology in synchronous

distributed systems. This algorithm selects the node with

the minimum leader coefficient to be the leader. The

leader coefficient is computed based on several criteria,

which are: average CPU usage, memory usage, bandwidth

usage, and failure rate. The elected leader is the node with

the minimum failure rate and minimum load, to ensure a

stable leader with high performance. The proposed

algorithm is faster and exchanges fewer messages than

other classical ring-based algorithms. However, the

authors didn't specify a formal method to fix the leader

coefficient criteria weights, and didn’t assign a backup for

the leader. Additionally, the authors didn’t consider the

failure of the initiator nodes. Moreover, the authors

considered the best-case complexity when the failed

leader recovers, instead of considering the best case of a

new election.

Rodrigues et al. [22] proposed a new hierarchical

adaptive leader election algorithm for static distributed

systems that support the recovery of failed nodes. This

algorithm is designed for the vCube logical topology. The

algorithm selects the process with the smallest UID

among the processes that are the most stable. The stability

of every process is measured by its incarnation, which is

a variable that counts the number of recoveries that a

process has had. Initially, all processes elect process 0 as

the leader. Afterwards, if the leader recovers after a

failure, its incarnation is updated and the second most

stable process replaces the leader. A penalty is applied to

nodes that fail and recover to avoid being stuck with the

same unstable leader. Even though this algorithm brings

several contributions, it does not consider multiple

criteria.

A recent work by Biswas et al. [23] proposed a leader

election algorithm that takes into consideration multiple

quality attributes of the leader. This algorithm is made for

partially synchronous networks with arbitrary topology,

so it doesn't depend on a specific topology. The quality

attributes of the leader are determined by human experts.

The attributes are fixed by uniting the sets of attributes

proposed by each expert. Consequently, these attributes

change according to the system requirements. Afterward,

the attribute weights are calculated based on the

preference of experts using pair-wise comparison

matrices that show each expert's preference regarding

each pair of quality attributes. The leader is elected based

on a score called the quality factor, which is obtained

using a modified version of the MCDA method TOPSIS.

The algorithm ensures that the system recovers to its

correct state after failures and partitioning, thus, it is fault-

tolerant. In this algorithm, a node sends election election-

initiating message to adjacent nodes, which are

considered child nodes. Child nodes send back the

maximum quality factor of their children to their parent

nodes. A node that receives a message twice becomes a

co-parent node. The algorithm required less election time

and less communication overhead when compared to the

PALE algorithm. It was also compared to other algorithms

in terms of functionality and complexity. The multi-

attribute algorithm is tolerant to partitioning. On the

opposite side, this paper didn't consider assigning a

backup leader, meaning, when the leader fails, the election

algorithm has to be executed again. In addition, the

weighting method used is subjective.

Science, Engineering and Technology Vol. 5, No. 2, Online First

Online First

Other classical and popular algorithms like LeLann,

LCR, HS, and Bully algorithms [24], [25], [26], [27] rely

solely on the UID to determine the leader and don’t

reserve a backup leader.

Table 1 compares between the previously discussed

election algorithms based on functionality and

complexity.

Laredj A. et al. tackled the problematic of electing a

coordinator within a collaborative e-maintenance process

[28]. They used the ELECTRE I MCDA method to elect

one of the experts as the coordinator. This method resulted

in a partial ranking of the experts. Meaning, some experts

were incomparable. The experts were evaluated based

only on five criteria: experience as an expert, network

speed, distance to breakdown site, coordinator

experience, and response time. In addition, the weights

were fixed without using a formal weighting method.

Moreover, using an MCDA method that doesn’t provide

a complete ranking of the experts resulted in the absence

of a backup leader who would handle the process in case

the connection between the coordinator and technicians is

lost. This requires running another iteration of the election

process just to replace the former leader. Furthermore,

their work didn’t contain visual charts that should help in

analyzing and comparing the different experts. Finally,

this paper didn’t evaluate the performance and quality of

using the ELECTRE I method on their example.

Mohammedi Taieb and Laredj [9] proposed a multi-

criteria approach for electing the GDSS facilitator. The

authors used the Analytic Hierarchy Process to fix the

election criteria weights. Then, applied MAUT, SAW,

TOPSIS, and PROMETHEE II on a collaborative e-

maintenance case study to find the most suitable method

among the four for electing a facilitator. MAUT and

PROMETHEE II gave similar results. Their comparison

showed that PROMETHEE II was easier to use than

MAUT and had a better performance.

Table 1. Comparison between existing election algorithms.

L
ea

d
er

F
ai

lu
re

D
et

ec
ti

o
n

Y
es

N
o

N
o

Y
es

H
ea

rt
b

ea
t

N
o

N
o

Y
es

Y
es

Y
es

N
o

t

sp
ec

if
ie

d

Y
es

Y
es

,

F
in

d
er

n
o
d

es

N
o

Y
es

(H
ea

rt
b
ea

t)

N
o

t

sp
ec

if
ie

d

Y
es

H
ea

rt
b

ea
t

L
ea

d
er

R
ec

o
v

er
y

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

Y
es

Y
es

N
o

N
o

N
o

N
o

N
o

N
o

Y
es

Y
es

M
u
lt

i

C
ri

te
ri

a

N
o

N
o

N
o

N
o

N
o

Y
es

N
o

N
o

Y
es

Y
es

N
o

N
o

Y
es

N
o

N
o

N
o

U
ID

 a
n
d

In
ca

rn
at

io
n

Y
es

O
p

ti
m

iz
ed

 f
o

r

H
u

m
an

s

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

s

W
ei

g
h
ti

n
g

M
et

h
o
d

N
o

N
o

N
o

N
o

N
o

Y
es

,
F

u
zz

y

P
ai

r-
w

is
e

co
m

p
ar

is
o
n

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

Y
es

H
o

m
o
g

en
eo

u
s

N
o

t
S

p
ec

if
ie

d

N
o

t
S

p
ec

if
ie

d

N
o

t
S

p
ec

if
ie

d

N
o

t
sp

ec
if

ie
d

N
o

t
S

p
ec

if
ie

d

N
o

t
S

p
ec

if
ie

d

N
o

t
S

p
ec

if
ie

d

N
o

t
S

p
ec

if
ie

d

N
o

t
S

p
ec

if
ie

d

Y
es

N
o

t
sp

ec
if

ie
d

N
o

t
sp

ec
if

ie
d

N
o

t
sp

ec
if

ie
d

N
o

t
sp

ec
if

ie
d

N
o

t
sp

ec
if

ie
d

N
o

t
sp

ec
if

ie
d

N
o

t
S

p
ec

if
ie

d

H
et

er
o

g
en

o
u

s

P
ar

ti
ti

o
n
in

g

T
o

le
ra

b
il

it
y

N
o

N
o

N
o

N
o

tw
o

 p
ar

ti
ti

o
n

s

N
o

N
o

Y
es

N
o

N
o

N
o

N
o

N
o

Y
es

Y
es

N
o

N
o

Y
es

B
ac

k
u

p

L
ea

d
er

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

Y
es

,
V

ic
e

g
at

ew
ay

N
o

N
o

Y
es

Y
es

N
ex

t
m

o
st

st
ab

le

N
o

Table 1 continued

Science, Engineering and Technology Vol. 5, No. 2, Online First

Online First

Table 1 (continued). Comparison between existing election algorithms.

T
ie

-B
re

ak

N
o

 p
o

ss
ib

le

ti
e

N
o

 p
o

ss
ib

le

ti
e

N
o

N
o

 p
o

ss
ib

le

ti
e

N
o

N
o

N
o

Y
es

,
H

ig
h

es
t

U
ID

N
o

Y
es

,
M

ax

U
ID

N
o

N
o

N
o

Y
es

,

se
co

n
d

ar
y

v
o
te

s
Y

es
,
M

ax

U
ID

Y
es

,
h

ig
h
es

t

U
ID

U
ID

Y
es

,
m

in
 I

D

P
ri

v
ac

y

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

Y
es

N
o

N
o

N
o

N
o

Y
ea

r

1
9
7
7

1
9
7
9

1
9
8
0

1
9
8
2

2
0
2
0

2
0
2
1

2
0
1
8

2
0
2
1

2
0
1
8

2
0
2
1

2
0
2
0

2
0
2
2

2
0
1
2

2
0
2
3

2
0
1
3

2
0
2
2

2
0
2
4

2
0
2
5

E
le

ct
io

n
 C

ri
te

ri
a

U
ID

M
ax

 o
r

M
in

 U
ID

L
ar

g
es

t
U

ID

H
ig

h
es

t
p

ri
o

ri
ty

M
aj

o
ri

ty
 w

ei
g
h
te

d
 v

o
te

s

7
 c

ri
te

ri
a

S
ta

k
e

V
al

u
e

C
lo

se
n

es
s

C
en

tr
al

it
y

R
es

o
u

rc
e

st
re

n
g
th

 v
al

u
e

=
 C

P
U

,
M

em
o

ry
,
an

d

E
n

er
g

y
 (

R
em

ai
n
in

g

B
at

te
ry

 L
if

e)

S
m

al
le

st
 L

ea
d
er

C
o
ef

fi
ci

en
t

=
 F

ai
lu

re

R
at

e
+

 L
o

ad

M
in

im
u

m
 V

al
u

e

D
ev

ia
ti

o
n

 (
C

en
tr

al
it

y
)

R
em

ai
n

in
g
 B

at
te

ry
 &

N
o

d
e

D
eg

re
e

M
o

st
 V

o
te

s

N
o

d
e

W
ei

g
h
t

N
o

d
e

W
ei

g
h
t

M
o

st
 s

ta
b

le
 w

it
h

sm
al

le
st

 U
ID

Q

u
al

it
y

 a
tt

ri
b

u
te

s

M
o
b
il

it
y

S
u

p
p
o

rt

N
o

N
o

N
o

N
o

N
o

Y
es

N
o

Y
es

N
o

N
o

N
o

N
o

Y
es

N
o

Y
es

N
o

N
o

N
o

S
tr

u
ct

u
re

S
ta

ti
c

S
ta

ti
c

S
ta

ti
c

S
ta

ti
c

S
ta

ti
c

S
ta

ti
c

st
at

ic

D
y

n
am

ic

D
y

n
am

ic

D
y

n
am

ic

D
y

n
am

ic

D
y

n
am

ic

D
y

n
am

ic

st
at

ic

D
y

n
am

ic

S
ta

ti
c

S
ta

ti
c

S
ta

ti
c

F
au

lt

to
le

ra
n

ce

Y
es

Y
es

N
o

Y
es

O
n

ly
 l

ea
d

er

N
o

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

L
ea

d
er

 o
n

ly

Y
es

Y
es

S
y

n
ch

ro
n
iz

at
io

n

A
sy

n
ch

ro
n
o
u

s

A
sy

n
ch

ro
n
o
u

s

A
sy

n
ch

ro
n
o
u

s

A
sy

n
ch

ro
n
o
u

s

N
o

t
sp

ec
if

ie
d

N
o

t
sp

ec
if

ie
d

N
o

t
sp

ec
if

ie
d

P
ar

ti
al

ly

S
y

n
ch

ro
n
o
u

s

N
o

t
sp

ec
if

ie
d

S
y

n
ch

ro
n
o
u

s

N
o

t
sp

ec
if

ie
d

S
y

n
ch

ro
n
o
u

s

A
sy

n
ch

ro
n
o
u

s

A
sy

n
ch

ro
n
o
u

s

A
sy

n
ch

ro
n
o
u

s

A
sy

n
ch

ro
n
o
u

s

P
ar

ti
al

ly

S
y

n
ch

ro
n
o
u

s

P

ar
ti

al
ly

S
y

n
ch

ro
n
o
u

s

T
o
p

o
lo

g
y

U
n

id
ir

ec
ti

o
n

al
 R

in
g

U
n

id
ir

ec
ti

o
n

al
 R

in
g

B
id

ir
ec

ti
o
n

al
 R

in
g

C
o

m
p

le
te

 M
es

h

M
es

h

M
es

h

U
n

id
ir

ec
ti

o
n

al
 R

in
g

A
rb

it
ra

ry

U
n

id
ir

ec
ti

o
n

al
 R

in
g

B
id

ir
ec

ti
o
n

al
 R

in
g

A
rb

it
ra

ry

W
S

N

P
ar

ti
al

 M
es

h
/

W
A

D
H

O
C

G
ra

p
h
 (

M
es

h
)

A
rb

it
ra

ry

G
ri

d
 &

 C
o

m
p

le
te

G
ra

p
h

v
C

u
b

e

A
rb

it
ra

ry

M
es

sa
g
e

C
o

m
p

le
x

it
y

O
(n

²)

O
(n

²)

O
(n

lo
g

(n
))

O
(n

^
2

)

N
o

t
m

en
ti

o
n

ed

N
o

t
m

en
ti

o
n

ed

N
o

t
m

en
ti

o
n

ed

N
o

t
m

en
ti

o
n

ed

O
(n

)

O
(n

²)

k
n

(m
+

1
)

N
o

t
m

en
ti

o
n

ed

O
(n

)

O
(d

ia
m

et
er

(G
)*

N
*

p
)

N
o

t
m

en
ti

o
n

ed

N
o

t
m

en
ti

o
n

ed

N
lo

g
2

(N
)

p
er

te
st

in
g
 r

o
u

n
d

O

(n
.l

)

T
im

e

co
m

p
le

x
it

y

O
(n

)

O
(n

)

O
(n

)

O
(1

)

N
o

t

m
en

ti
o

n
ed

N
o

t

m
en

ti
o

n
ed

O
(n

)

N
o

t

m
en

ti
o

n
ed

N
o

t

m
en

ti
o

n
ed

O
(n

)

N
o

t

m
en

ti
o

n
ed

N
o

t

m
en

ti
o

n
ed

N
o

t

m
en

ti
o

n
ed

N
o

t

m
en

ti
o

n
ed

N
o

t

m
en

ti
o

n
ed

N
o

t

m
en

ti
o

n
ed

L
o
g

2
(n

)

O
(n

.D
)

A
lg

o
ri

th
m

\c
ri

te

ri
a

L
eL

an
n

 [
9

]

L
C

R
[1

0
]

H
S

 [
2

1
]

B
u
ll

y
 [

2
2

]

W
ei

g
h
t

B
as

ed
[1

9
]

F
u

zz
y

 A
H

P

[1
6

]

D
P

o
S

 [
2
0

]

C
en

tr
al

it
y

-

b
as

ed
 [

1
8

]

R
es

o
u

rc
e-

b
as

ed

[3
]

F
R

L
L

E
 [

8
]

D
o

tR
o
 [

1
4

]

D
R

L
E

F
 [

1
5

]

C
o
n

se
n

su
s

[1
7

]

P
ri

v
ac

y
-

P
re

se
rv

ed
 [

1
1

]

T
o
p

-K
 [

1
2

]

S
E

A
L

E
A

 [
1
3

]

H
ie

ra
rc

h
ic

al

A
d

ap
ti

v
e

M
u
lt

i-
at

tr
ib

u
te

Science, Engineering and Technology Vol. 5, No. 2, Online First

Online First

3. Methodology and Election Criteria

The GDSS facilitator has to make sure that each

participant expresses their worries. Additionally, he/she

guarantees that the opinions of the DMs are mapped

correctly. Furthermore, the facilitator has to make certain

that the methods and procedures are used faultlessly while

considering potential human biases. Moreover, he/she

informs the participants of the implicit assumptions

related to the used methods. Finally, the outcome of the

decision model has to be clarified to the DMs by the

facilitator [29].

Before the group decision-making process starts, the

GDSS facilitator has to create the meeting agenda and

select the DMs who will participate in the meeting.

Throughout the meeting, the facilitator will be responsible

for the generation, organization and evaluation of the

alternatives. After the meeting is done, he/she will present

the final decision to all the participants [30].

Distributed leader election algorithms are designed to

solve the problem of choosing a unique node to be the

leader of a connected network [14]. Similarly, the

problematic treated in this paper consists of choosing a

single DM to be the facilitator of a group of DMs utilizing

the GDSS. In both problematics, there are multiple

entities (nodes and DMs) and one controlling entity

(leader/facilitator). Furthermore, the entities in both fields

are geographically distant and connected via a network.

Moreover, in both cases, they can communicate with each

other via messages. Additionally, the same network

protocols can be used in both cases. Figure 1 summarizes

the similarities between the two problematics.

Election algorithms and the election of a facilitator

have the same goal, which is to agree on a single leader.

Both cases require considering certain criteria during the

election. However, the criteria are mostly different since

one side concerns machines while the other involves

humans. Election algorithms have to be fault-tolerant, the

same as a facilitator needs a backup DM in case he loses

connection with the other group members.

These similarities make the election algorithms seem

like a potential solution to the problematic of electing a

GDSS facilitator. However, due to the different nature of

entities and context, an election algorithm designed for

machines has to be modified to support human elections.

Figure 1. Venn Diagram showing the similarities between

distributed election algorithms and GDSS.

The election algorithms that exist in the literature (See

literature review in section 2) didn’t include all the

features required for the GDSS facilitator election in one

single algorithm. Consequently, a potential solution is to

combine each feature from each algorithm into a new

election algorithm designed specifically for the

problematic of GDSS facilitator election. A fulfilling

algorithm should have a backup leader and should

consider multiple criteria that are relatable or applicable

to humans. Additionally, it should use a proper weighting

method to indicate the importance of each election

criterion. Furthermore, it should consider the recovery of

failed nodes, because realistically, DMs can lose their

connection to the GDSS at any time, and recover their

connection later on. Finally, in case a tie happens at the

end of the election, a tie-break mechanism is necessary to

satisfy the uniqueness property.

This paper introduces a new election algorithm called

GFEA, optimized for the election of a GDSS facilitator.

In addition, an objective weighting method is used to fix

the election criteria weights. Moreover, the failure and

recovery of the initiator and the facilitator is handled.

Finally, a new tie-breaking mechanism is proposed.

3.1. Election criteria

Gathering facilitator election criteria from DMs

requires specifying a real-world problem on which we can

use the GDSS. Among the applicable fields is the

collaborative e-maintenance process, which was used as a

Science, Engineering and Technology Vol. 5, No. 2, Online First

Online First

case study (see section 7.1). The DELPHI method [31]

was applied to gather the criteria for electing a GDSS

facilitator from industrial maintenance professionals. The

election criteria fall into 3 main categories, which are the

DM experience, machine security, and network

performance. All election criteria, apart from the number

of treated breakdowns, are general GDSS facilitator

criteria. However, “Treated breakdowns” is a criterion

specific to maintenance-related fields such as industrial

maintenance. The election criteria are described as

follows:

1- Experience as a DM: Number of times the DM was

involved in a group decision-making process

(beneficial).

2- Treated breakdowns: This criterion is specific to the

collaborative e-maintenance process. It represents the

number of repaired breakdowns (beneficial).

3- Distance: This criterion measures how far the DM is

from the breakdown site in Kilometers (non-

beneficial).

4- Response time: Elapsed time in minutes between the

announcement of a breakdown and the reception of

the DM response (non-beneficial).

5- Coordination experience: Number of times a DM

has participated as a coordinator (beneficial).

6- Open ports: Number of open network ports on the

DM’s machine (non-beneficial).

7- Vulnerabilities: Number of vulnerabilities present on

the DM’s machine, obtained using a vulnerability

scanner (non-beneficial).

8- Severity sum: Summation of the severities

corresponding to the detected vulnerabilities. The

severity is represented by the CVSS (Common

Vulnerability Scoring System) score of the

vulnerability (non-beneficial).

9- Connection Type: of the DM’s internet connection.

There are 4 possible types: mobile, ADSL, Satellite or

Fiber. Each one is represented using a numeric score

based on its stability, speed, and network delay.

Mobile corresponds to 0.4, ADSL: 0.6, Cable: 0.7,

Satellite: 0.8, and Fiber is considered the best type of

internet connection [32] with a score of 1.

10- Network latency: Average network response time

between the DM’s machine and the breakdown site,

measured in milliseconds (non-beneficial).

11- Download speed: Download speed of the DM’s

internet connection in Mbps (beneficial).

12- Upload speed: Upload speed of the DM’s internet

connection in Mbps (beneficial).

3.1.1. Weighting method

There are three types of weighting methods in the

literature: objective, subjective, and combined. When

using objective weighting methods, the DMs' subjective

preferences are not considered [33]. In this work, the

authors opted for objective methods to keep the election

algorithm formal and unbiased. Among the popular

objective methods are: the entropy, mean weight,

CRITIC, standard deviation, and statistical variance

methods [34]. There are other newer methods like CILOS,

IDOCRIW, and MEREC. In MEREC (Method based on

the Removal Effects of Criteria), the effect of removing a

criterion on the evaluation of alternatives is used to fix the

criteria weights [10]. The MEREC weighting method was

used in this paper to fix the election criteria weights.

Among the reasons MEREC was chosen instead of

other objective methods is that it is easy to understand and

use, since it simply involves applying a set of formulas to

the values that are already present in the performance

matrix. In addition, it has a strong mathematical

foundation [35]. However, this doesn’t mean that other

objective weighting methods aren’t valid. It is possible to

use other methods with the proposed algorithm.

This method takes the performance matrix and the

criteria types as input. The performance matrix should

only contain positive, non-zero values.

 The values corresponding to non-beneficial

criteria are normalized according to formula (1). While in

the case of beneficial criteria, the values are normalized

by applying formula (2) [10].

𝑥′𝑖𝑗 =
𝑥𝑖𝑗

max
i

(𝑥𝑖𝑗)
 (1)

𝑥′𝑖𝑗 =
min

i
(𝑥𝑖𝑗)

𝑥𝑖𝑗
 (2)

 Next, the general performance 𝐺𝑃𝑖 of each

alternative i is calculated based on formula (3) [10].

𝐺𝑃𝑖 = ln(1 + (
1

𝑚
∑ | ln(𝑥𝑖𝑗

′) |𝑗)) (3)

 The following step consists of constructing m sets

that contain the performance of alternatives when

removing each criterion j. This performance is calculated

using formula (4) [10]. Where k represents all criteria

except criterion j.

Science, Engineering and Technology Vol. 5, No. 2, Online First

Online First

𝐺𝑃𝑖𝑗
′ = ln(1 + (

1

𝑚
∑ | ln(𝑥𝑖𝑘

′) |𝑘,𝑘≠𝑗)) (4)

 In the succeeding step, the removal effect of each

criterion is calculated using formula (5) [10].

𝑅𝐸𝑗 = ∑ |𝐺𝑃𝑖𝑗
′ − 𝐺𝑃𝑖|𝑛

𝑖=1 (5)

 Finally, the criteria weights are obtained from the

removal effects using formula (6) [10].

𝑤𝑗 =
𝑅𝐸𝑗

∑ 𝑅𝐸𝑘
𝑚
𝑘=1

 (6)

4. System Model and Problem Definition

4.1. Problem definition

Given a set D of DMs connected using a unidirectional

ring network with |D| = n. One of the DMs has to take the

role of the GDSS facilitator [4], while another one is

reserved as a backup. The latter replaces the failed

facilitator when he loses his connection with the network.

The election algorithm has to consider multiple election

criteria, and a formal weighting method is needed to

distinguish the importance of each criterion. Additionally,

the system has to be fault-tolerant and must be capable of

handling the potential recovery of failed nodes. Finally,

the election algorithm must satisfy the 3 correctness

conditions (uniqueness, termination, and agreement) [21].

4.2. System model

The network is a synchronous, static, unidirectional

ring composed of n nodes. Each node represents a DM.

There has to be at least 2 decision-makers in the network

(n>=2) [4]. Message passing is used for communication.

The message delay between two nodes is based on the

distance between the two DMs. If a DM loses his

connection with the network, then its node is considered a

failed node.

4.3. Assumptions

To simplify the implementation and analysis of the

proposed algorithm, a set of assumptions was considered.

First, each node has a unique identifier (0 < UID <= n)

[21], which also indicates the order of joining the

decision-making session (First DM to join the session has

the smallest UID). Moreover, nodes are homogeneous and

not mobile. Furthermore, the maximum number of nodes

n is fixed before starting the election. Additionally, each

node knows the UID of the previous and next adjacent

nodes [16]. Another assumption is that each node receives

a heartbeat from the previous node and sends a periodic

heartbeat message to the next adjacent node to detect if

the previous node fails [16]. In addition, the

communication direction is clockwise. On top of that, the

DM’s performance is still used in calculating the election

criteria weights even if the DM loses his connection,

because this gives more input data to the objective

weighting method. Furthermore, there are no hops

between each pair of adjacent nodes. Moreover, no new

DMs are added to the network other than the preselected

n DMs. Finally, the ring topology is only used for the

election and failure tolerance, it is not used for the actual

group meeting communication.

4.4. Notations

There are 7 types of messages in this algorithm. The

description of each type is presented below:

• Message(uid, value[j]): General message object

containing the UID of the message creator and his

value of the jth criterion.

• InitiationMsg(uid, value[1]): Initiation message

created by the initiator, which includes the UID of the

initiator node. In addition to its value of the most

important criterion (1st criterion).

• LeaderMsg(leader_uid, backup_uid): Message

announcing the new elected leader and the backup

leader to all other nodes.

• FailureMsg(uid): Message announcing the failure of

a node by sending its UID.

• LeaderFailureMsg(new_leader_uid): Message

announcing the leader failure, and informing other

nodes that the backup has become the new leader.

• RecoveryMsg(uid): Message announcing the

recovery of a previously failed DM by sending his

UID.

• LeaderRecoveryMsg(failed_leader_uid): Message

announcing the recovery of the previously failed

leader, thus updating the nodes with his new state, and

informing them that the leader has become a backup.

• TieMessage(ties[k], uid, valuea[m]): Message

containing the UIDs of the tied DMs holding the

maximum score, the UID of the message creator, and

their values of the j-th criterion.

Variables used within GFEA are detailed below:

• state[n]: List containing the combination of role

(DM, Initiator, Leader) and state (Failed or

Science, Engineering and Technology Vol. 5, No. 2, Online First

Online First

Connected) of each node in the network. Each node

has its local state list, which gets updated when

receiving messages. This allows each node to be

aware of the current state of every other node in the

same network.

• value[m]: List containing the evaluation of a DM in

each election criterion.

• criterion_type[m]: List containing the type of each

criterion, either a beneficial (maximization) criterion

or non-beneficial (minimization) criterion.

• r: Received message.

• score[n]: List containing the algorithm score for each

DM.

• best_dms: List of DMs with the maximum score.

• ranking[n]: List containing the ranking of DMs

based on the final score.

Procedures integrated within the proposed algorithm

are as follows:

• send(Message msg): Procedure for passing a

message to the next adjacent node.

• broadcast(Message msg): Procedure implying that

each node should keep forwarding the contained

message to the next node until it reaches its original

node.

5. Proposed Election Algorithm

In this work, a new election algorithm called GFEA

(GDSS Facilitator Election Algorithm) is proposed. This

algorithm is inspired by the FRLLE election algorithm

[21] and MCDM (multi-criteria decision-making)

methods. This algorithm is optimized for the problematic

of electing a GDSS facilitator. It uses the ring topology

with unidirectional communication channels. The nodes

communicate via message passing. Each DM has a unique

identifier that indicates the order in which the DM joined

the decision-making session. Furthermore, each node is in

one of seven states: Initiator, DM, leader, backup, failed

leader, failed initiator or failed DM. Flowchart Figure 2

illustrates the proposed leader election algorithm

concisely.

Figure 2. Flowchart Summarizing the Proposed Election Algorithm GFEA.

Science, Engineering and Technology Vol. 5, No. 2, Online First

Online First

Initiation Phase: This phase concerns the detection of

the failed leader and the composition of the first election

message. If a facilitator already exists and the node that is

next to the leader doesn’t receive a heartbeat message

from him within a period called the heartbeat timeout

[36], it announces that the leader has failed, and the

backup leader becomes the new leader. However, if there

is no leader in the network, then the first DM to join the

session (UID = 1) becomes the initiator of the facilitator

election. The first-ever election only starts when all DMs

have joined the session. The initiator starts by sorting the

election criteria based on their importance in ascending

order (From least important to most important). Next, he

creates and sends the election initiation message

containing his UID and its value of the 1st most important

criterion.

Scoring Phase: In this phase (Algorithm 1), when a

node receives an election message, it checks its value in

criterion j. If the received value is better than its own

(greater in the case of maximization criteria and smaller

in minimization criteria), and then forwards the message

to the next node. But if the received value is worse than

its value, it creates a new message containing its UID and

its value of criterion j. Then it sends the message to the

next node. Once the message reaches the initiator node, it

sends a new message for the next most important

criterion, j+1. The same process is repeated for all election

criteria. If more than one DM has the best value in a

criterion, then only the DM with the smallest UID gets the

criterion weight added to his score. At the end of the final

round, if multiple DMs have the maximum score, then a

tie-break mechanism is used to return a single facilitator

(see Algorithm 2). Afterward, the initiator node sends the

chosen leader and the backup leader UIDs in a broadcast

message to inform all other DMs who the current

facilitator is and who should replace him if he fails.

Tie Break: In case two or more DMs have the same

final score, then the initiator uses Algorithm 2 to break the

tie and return one DM as the facilitator. First, the initiator

starts by sorting the criteria in descending order based on

their weights. Starting from the most important criterion

(biggest weight) to the least important criterion (smallest

weight), the first DM to have a better value than all other

tied DMs in a criterion j is declared the leader. The

second-best value in the same criterion j is selected as the

backup leader. If multiple DMs have the best value in a

criterion j, then the algorithm continues to the next most

important criterion and checks again. In the rare case of

having a tie in all criteria, then among the DMs having the

maximum score, the first one to have joined the session

(smallest UID) is elected as the facilitator, and the one

who joined after him is the backup leader (second smallest

UID). The tie-break mechanism is detailed in Algorithm

2.

Handling Leader Announcement Message: When a

DM node receives the leader announcement message, it

updates its state list with the new leader and backup leader

UIDs and passes the received message to the next node.

On the other hand, if the initiator node receives this type

of message, it changes its state to DM. Except if it's

already a leader or a backup leader, in that case, it doesn’t

change its state.

Algorithm 1. Scoring Phase

Input: pm, criteria_weights, criterion_type.

Output: leader, backup.

n: number of decision makers;

m: number of criteria;

r: received message;

1 If(this node is the initiator node) Then

2 If(this is the final round) Then

3 score[r.uid] = score[r.uid] + criteria_weights[j];

4 best_dms = UIDs of DMs with max score;

5 If(Only one DM has the max score)Then

6 leader = best_dms;

7 ranked = sort DMs from highest score to

smallest score;

8 backup = ranked[2];

9 leader_msg = new LeaderMsg(leader,

 backup);

10 broadcast(leader_msg);

11 Else tie_break(best_dms);

12 Else Add weight of j to the score of the

 received UID;

13 msg = new Message(self.uid, value[j+1]);

14 send(msg);

15 Else If(criterion_type[j]==”max”) Then

16 If(r.value[j] < self.value[j]) Then

17 msg = new Message(self.uid,

 self.value[j]);

18 send(msg);

19 Else send(r);

20 Else If(criterion_type[j]==”min”) Then

21 If(r.value[j] > self.value[j]) Then

22 msg = new Message(self.uid,

 self.value[j]);

23 send(msg);

24 Else send(r);

Science, Engineering and Technology Vol. 5, No. 2, Online First

Online First

Algorithm 2. Tie Break Between Multiple DMs

ties = [a, b, …, k]; // k tied nodes

1 sortDescending(criteria, criteria_weight);

2 j = 1;

3 If(this is the initiator node)Then

4 While(j <= m) Do

5 If(initiator is one of the tied DMs)Then

6 tie_break_msg = new TieMessage(ties,

 self.uid, self.value[j]);

7 Else tie_break_msg = New TieMessage(ties,

 self.uid, Null);

8 send(tie_break_msg);

9 Else If(this is a DM and criterion_type[j]==”max”)

10 If (this is a tied DM and r.value[j] < self.value[j]

 or r.value[j] == Null) Then

11 self.backup = r.uid;

12 self.leader = self.uid;

13 found = True;

14 tie_break_msg = new TieMessage(ties,

self.uid, self.value[j], found);

15 send(tie_break_msg);

16 Else send(r);

17 Else If(this is a DM and criterion_type[j]==”min”)

18 If (this is a tied DM and r.value[j] > self.value[j]

or r.value[j] == Null) Then

19 self.backup = r.uid;

20 self.leader = self.uid;

21 found = True;

22 tie_break_msg = new TieMessage(ties,

 self.uid, self.value[j], found);

23 send(tie_break_msg);

24 Else send(r);

25 Else If(This is a DM)Then

26 send(r);

27 If(Initiator receives TieMessage and found == True)

28 leader = r.leader;

29 backup = r.backup;

30 leader_msg = new LeaderMsg(leader,

backup);

31 BreakLoop;

32 Else If(Initiator receives TieMessage and found == False)

33 j = j + 1; // Continue to next criterion

34 Else If(there is a tie in all criteria) Then

35 leader, backup = best_dms[1], best_dms[2];

//Choose 2 DMs with smallest UIDs from tied DMs

36 broadcast(leader_msg);

Fault Tolerance: In case the facilitator gets

disconnected from the network, the node next to the failed

leader that detected his failure sends a leader failure

message containing the UID of the backup as the new

leader. The backup leader is the DM with the second-best

score. Having a backup eliminates the time and resource

cost of running the election another time when the leader

fails [14]. If a DM loses his connection with the network,

then his state is changed to “Failed Node”, and his

previous node gets connected directly to his next node in

order to keep the ring topology intact. This network

doesn’t support partitioning as it will always try to keep

its logical ring topology intact.

Additionally, if the initiator node fails in the first round

(j = 1), then the node next to the failed initiator becomes

the new initiator, and the election continues without

interruption (see Algorithm 3). On the other hand, if the

initiator fails after the first round, then the election has to

restart, and the node next to the failed initiator becomes

the new initiator. Because the failed initiator had the list

containing the scores. Hence, the new initiator creates the

election initiation message starting with the most

important criterion and sends it to the next node.

Algorithm 3. Initiator Failure

1 If(Initiator node fails”) Then

2 If(it’s the first round) Then

3 Node next to the failed initiator becomes the new

 initiator;

4 Continue current election;

5 Else Stop current election;

6 Node next to failed initiator becomes the

new initiator;

7 i_msg = New InitiationMsg(new_initiator,

 value[1], new_initiator);

8 send(i_msg); \\ New initiator sends the new

initiation message.

Failure Recovery: When a previously failed node

joins the network, it restores its previous status (DM or

Leader). As a result, if the backup has already replaced the

leader and the previously failed leader gets reconnected to

the session, then he becomes a leader again, and the

backup becomes a backup again (see Algorithm 4). Next,

the recovered leader sends a recovery message to the other

nodes. Furthermore, if a DM recovers before the final

round (criterion m) is finished, he is still considered a

candidate. Because the criteria are sorted in ascending

order, he can compensate for the previous rounds (less

important criteria) by scoring in the most important

criteria (later rounds). However, if he recovers after all the

rounds have gone through, then he isn’t considered a

Science, Engineering and Technology Vol. 5, No. 2, Online First

Online First

candidate and will be removed from the ranking, as the

initiator is already in the leader announcement phase and

isn’t aware of the DM recovery until the recovery message

reaches him.

If the failed initiator recovers during the first round,

then it restores its state as the initiator, and the election

continues. But if the first round has passed, then it

becomes a DM.

When the leader receives his recovery message, he

discards it [21]. However, if a DM node receives a leader

recovery message, it updates its state list with the new

state of the recovered leader and forwards the received

message to the next adjacent node.

Algorithm 4. Recovery of failed nodes

1 If(This is the recovering leader) Then

2 backup = leader;

3 leader = previously failed leader UID;

4 rec_msg = new LeaderRecoveryMsg(leader, backup);

5 broadcast(rec_msg);

6 Else If(This is the recovering initiator and current round ==

failure round) Then

7 Recovered initiator restores his initiator state;

8 Current initiator becomes a DM;

9 continue_election();

10 Else If(This is the recovering initiator and current round ≠

failure round) Then

11 Recovered initiator becomes a DM;

12 New initiator continues current election;

13 Else // This is a DM

14 rec_msg = new RecoveryMsg(self.uid);

15 broadcast(rec_msg);

5.1. Election algorithm correctness

For an election algorithm to be correct, it has to satisfy

the three following conditions [21].

 Uniqueness: The DM with the highest score will be

elected as the GDSS facilitator. However, if there are

multiple DMs having the same max score, a tie-breaking

mechanism is used. Starting from the most important

criterion to the least important one, the first candidate to

have an advantage in criterion j will be selected as the

leader. Which means that there will always be one single

leader in the system.

Termination: The algorithm takes m×n + n time steps

when there is no tie. In contrast, in the worst-case

scenario, it takes m×n + m×k + n time steps when there is

a tie, where k is the number of tied DMs. Consequently,

the algorithm does terminate in a finite time.

 Agreement: At the end of the algorithm or after the

tie-breaking mechanism ends, an announcement message

containing the elected leader and backup leader UIDs is

sent to all DMs. Thus, every DM in the group is aware of

the newly elected facilitator.

6. Complexity Analysis

In this section, the proposed algorithm GFEA is

analyzed based on the number of time steps required and

the total number of exchanged messages in both best and

worst cases.

6.1. Time complexity

Time complexity is determined based on the number

of time of steps that the election algorithm takes to

complete.

Best case: When the leader fails, the node next to it

sends a failure message containing the UID of the backup,

which goes through n-1 nodes. Thus, the proposed

algorithm takes n-1time steps to end. As a result, the best

time complexity for the proposed GFEA algorithm is:

Ω(n). Where n is the number of DMs.

Worst case: The worst time complexity is when n-2

initiators fail after initiating all 12 rounds and before

receiving the final round message. In addition to a tie in

the score and all the tied DMs have the same values in all

criteria. An additional 2m time steps are required to break

the tie (two tied DMs). So, the total number of time steps

is: (n-2)×((n+2)/2) + 2m + 2 = m(n²/2 + n) + 4. Thus, the

worst time complexity is: O(m×n²).

6.2. Message complexity

Message complexity is obtained based on the number

of sent and received messages between all the nodes

during the election.

Best case: The best-case scenario is when the leader

fails and the failure message informs all n-1 nodes that the

backup is replacing him. Therefore, in the best case, 2n

messages are exchanged. Consequently, the message

complexity of GFEA in the best case is Ω(n).

Science, Engineering and Technology Vol. 5, No. 2, Online First

Online First

Worst case: The worst theoretical case is when n-2

initiators fail after initiating all 12 rounds and before

receiving the final round message. In addition to a tie in

the score and all the tied DMs have the same values in all

criteria. As a result, the proposed algorithm exchanges

2((n-2)×((n+2)/2) + 2m + 2) = m(n² + 2n) + 8 messages.

Therefore, the message complexity of GFEA in the worst

case is O(m×n²). An advantage of this algorithm is that

there is only one initiator at a time. Thus, it avoids

multiple nodes initiating the election at the same time.

7. Empirical Assessment

7.1. Case study

The proposed algorithm was tested on the case of

collaborative e-maintenance process in an industrial

setting. The collaborative e-maintenance system is a

distributed system that connects multiple experts distant

from each other to enable the proper coordination of their

tasks and output a solution in the form of a list containing

the repairing actions [37]. Similarly, the GDSS also

connects several DMs distributed geographically to reach

a consensus. By analogy, GDSS can be used in the

collaborative e-maintenance process to conduct the

decision-making process, resulting in choosing the

corrective actions to repair a broken industrial machine.

Furthermore, the collaborative e-maintenance requires

choosing one of the experts as the coordinator [37], who

has similar tasks to the GDSS facilitator. Since they are

both responsible for preparing and coordinating the group

meeting.

Besides discussing role assignments with the other

experts, the maintenance coordinator prepares and

coordinates the work. Additionally, he ensures that the

delays are not ignored [37]. Moreover, when there is an

additional breakdown, he checks whether or not there is

an idle expert or an idle group. If an expert is idle, the

coordinator then assigns him to the group treating the new

breakdown. Furthermore, when a group of experts needs

resources, the coordinator checks if the resources are used

or if there is a previous higher-priority request. If the

resource is idle, then he grants the permission to the

group, otherwise, he puts them in a queue. In addition, the

coordinator has to give each expert a sequence number.

On top of that, he can send an invitation to an idle expert

to join a group of experts. Finally, he verifies the

availability of the experts during the creation of a new

group [38].

When a breakdown happens, the technician on site

notifies the expertise center. The center then selects

multiple experts who are usually geographically distant

from the site. The number of selected experts depends on

the number of fields and the severity of the breakdown.

 During our case study, an industrial machine stopped

functioning correctly. Consequently, the expertise center

invited six experts to diagnose and provide a list of repair

actions to the technician on site. However, a coordinator

is required to proceed with the maintenance process. Here,

the coordinator is also going to be the facilitator of the

GDSS. The six experts were evaluated based on the 12

election criteria, which resulted in constructing the

following performance matrix Table 1.

7.2. Comparison of objective weighting methods

Table 2 shows the execution time in milliseconds (ms)

of five objective weighting methods on our performance

matrix (Table 3) using their Python implementations. The

authors used the “objective weighting” Python package as

an implementation of the methods. Figure 3 illustrates the

obtained weights from every method using a bar chart.

Table 2. Execution time of objective weighting methods.

Method MEREC CILOS IDOCRIW CRITIC ANGLE Entropy

Execution

Time (ms)
0.97 0.96 0.97 7.01 0.96 1

MEREC was applied to the performance matrix. As a

result, the weights corresponding to each election

criterion were fixed. The importance of each criterion is

presented in Table 4 and is illustrated in Figure 3. From

Table 4 and Figure 3 it is observed that applying MEREC

resulted in assigning the coordination experience criterion

greater importance than all other election criteria.

Science, Engineering and Technology Vol. 5, No. 2, Online First

Online First

Figure 3. Bar chart showing election criteria weights using different objective weighting methods.

Table 3. Case study performance matrix

Experience as DM Treated Breaks Distance Coordination Response Time Open Ports Vulnerabilities Severity Sum Connection Type Net Latency Download Upload

DM 1 12 8 500 2 17 20 16 32 1 13 100 10

DM 2 37 30 3938 19 20 15 14 10 0.8 366 25 2.5

DM 3 44 23 4401 13 19 18 20 22 0.6 486 50 5

DM 4 29 11 3477 5 18 9 22 31 0.3 198 20 2

DM 5 38 10 5029 3 17 11 10 19 1 103 500 200

DM 6 24 18 1846 9 21 13 18 28 0.8 232 20 2

Table 4. Election Criteria Weights Using MEREC

Criteria Experience as

DM

Treated

Breaks

Distance Coordination Response

Time

Open Ports Vulners Severity

Sum

Connectio

n Type

Net Latency Download Upload

MEREC

Weights

0.103 0.077 0.08 0.147 0.013 0.046 0.032 0.042 0.094 0.135 0.103 0.127

In this case study, it was the first time that the expert

group was formed. Meaning that the coordinator (leader)

role hasn’t been assigned to any expert yet. Consequently,

the DM who was the first one to join the group session is

the initiator of the leader election. He is also given the

smallest UID (DM 1). Here, each node represents the

machine of a decision-maker. DM1 sorts the criteria in

descending order based on their weights. Next, he creates

an initiation message i_msg(1, 2) and sends it to the

adjacent node next to him, following the clockwise

direction, which is DM 4. The original initiation message

contains the UID of the initiator node 1 and his

performance on the most important criterion, which is the

coordination experience criterion. Figure 4 illustrates how

the election algorithm is initiated.

When DM 4 receives the initiation message from DM

1, he checks whether the received value of the first

criterion is greater than or equal to his value. DM 4 value

is greater than the received one. So, he creates a new

message by setting the best value holder parameter to his

own UID (4). It updates the best value for that criterion to

5. Then, he sends the updated message msg1(4, 5) to the

next node (DM 6). Eventually, when the message reaches

DM 2, who has the best value in that criterion, he creates

0

0,1

0,2

0,3

0,4

0,5 Election Criteria Weights

CILOS MEREC Entropy Weights IDOCRIW CRITIC ANGLE

Science, Engineering and Technology Vol. 5, No. 2, Online First

Online First

a new message in which he changes the best value of the

1st criterion to his value 19 and changes the best value

holder parameter to 2. After that, he sends the message

msg1(2, 19) to the next node (DM 5). This can be observed

from Figure 4.

DM 1

DM 4

DM 6

DM 3

DM 2

DM 5

Initiator

Msg(3, value3[1]=13)

Value4[1]=5

Value6[1]=9

Value3[1]=13

Value2[1]=19> 13

Value5[1]=3

Value1[1]=2

InitMsg(1, value[1]=2)

Msg(4, value4[1]=5)

Msg(6, value6[1]=9)

Msg(2, value2[1]=19)

Msg(2, value2[1]=19)

Figure 4. Election initiation and first election round.

When the initiator receives a message containing the

index of the same criterion it first sent, msgj(uid, value[j]).

It adds the criterion weight to the DM’s score whose UID

is in the received message. This process is repeated for all

m election criteria. Handling the second round of the

election, which concerns the 2nd most important criterion

(network latency), is illustrated in Figure 5.

Figure 5. Second round of the election.

When the message of the final criterion, msg12(1, 17),

which is the least important criterion, reaches the initiator,

it adds the criterion weight to the DM with the best value

in that criterion. In addition, it chooses the DMs with the

highest and second-highest scores and sends their UIDs in

a leader announcement message, leader_msg(1, 2). These

two UIDs represent the UIDs of the leader and backup

leader, which are 1 and 2, respectively. This phase is

illustrated in Figure 6.

DM 1

DM 4

DM 6

DM 3

DM 2

DM 5

leader_msg(1, 2)

Leader

leader_msg(1, 2)

leader_msg(1, 2)leader_msg(1, 2)

leader_msg(1, 2)

leader_msg(1, 2)

Backup Leader

Figure 6. Leader & backup leader announcement.

The final GFEA score of each DM is shown in Table

5. The elected facilitator is DM 1, who was initially the

initiator, and the backup leader is DM 2, who got the

second highest score. The initiator ranked the DMs,

including itself, based on their score. This ranking is

presented in Table 6.

Table 5. Algorithm score for each DM.

DM UID 1 2 3 4 5 6

S c o r e 0 . 3 2 2 0 . 2 6 6 0 . 1 0 3 0 . 0 4 6 0 . 2 6 2 0

Table 6. Ranking of the DMs based on GFEA score.

Rank 1 2 3 4 5 6

DM UID DM 1 DM 2 DM 5 DM 3 DM 4 DM 6

7.3. Leader failure scenario

This subsection illustrates an example scenario in

which the leader DM 1 loses his connection to the

network. In this case, the next adjacent node, DM 4,

doesn’t receive a heartbeat message from the leader for a

period exceeding the threshold. Consequently, DM 4

considers that the leader has failed. Next, DM 4 sends a

leader failure message leader_failure_msg(2) containing

the UID of the new leader DM 2 (backup) who replaces

the facilitator automatically without executing the

election algorithm again (see Figure 7).

Science, Engineering and Technology Vol. 5, No. 2, Online First

Online First

Figure 7. The leader disconnects from the network.

When DM4 receives the leader failure message, it

discards it. Finally, each node keeps sending a periodic

heartbeat to its next node (see Figure 8).

DM 4

DM 6

DM 3

DM 2 DM4 Heartbeat

DM 6 Heartbeat
DM 3 Heartbeat

New Leader

DM 5 HeartbeatDM 5Leader Heartbeat

Figure 8. Backup replaces the failed leader.

7.4. Results & discussions

Figure 9 and Figure 10 show the normalized values of

the elected leader and backup leader. These values were

normalized using the best values available on the

performance matrix.

From Figure 9 and Table 1, it is seen that the elected

leader (DM 1) is the closest DM to the breakdown site.

This can come in handy if an expert physical presence is

required on-site or if he loses his connection to the GDSS.

Plus, it reduces the cost of time and travel fees for the

expert to arrive at the site. Similar to DM 5, he also has

the best response time. Additionally, DM 1 has the least

network lag (13 ms), which allows him to work with other

DMs almost in real time. This is mainly because of two

factors: he has the best type of internet connection (fiber

optic), and he has the shortest distance to the breakdown

site [39]. However, DM 1 doesn’t perform well in the

security category compared to other DMs. This means that

his machine makes the GDSS vulnerable to confidential

information leaks and malicious modifications.

Based on Figure 10 and Table 1, the backup leader

(DM 2) has the most coordination experience, ensuring a

well-planned meeting, better handling of conflicts, and

highlighting each DM’s opinion using the right questions.

Furthermore, DM 2 has participated the most in treating

industrial breakdowns and has been an industrial expert

longer than DM 1, giving him an edge when it comes to

technical questions, fetching required information from

the database, and breakdown diagnosis.

Figure 9 Radar chart showing normalized dataset values of

Expert 1.

Figure 10. Radar chart of normalized dataset values of Expert

2.

DM 1

DM 4

DM 6

DM 3

DM 2

DM 5

X X

Failed Leader

Backup Leader
Leader_failure_msg(2)

Science, Engineering and Technology Vol. 5, No. 2, Online First

Online First

Additionally, in the security category, DM 2 performs

better than DM 1. Since his machine has fewer

vulnerabilities with less severity and fewer open ports.

This means that his machine makes the GDSS less

vulnerable to malicious attacks. However, both his

download and upload speeds are considerably slower

when compared to other experts like DM 5. This can be

time-consuming when uploading or downloading files.

On top of this, his network delay is slightly high, resulting

in a lag during real-time audio and video communications

with the technician and with other DMs. Moreover, DM 2

has an average response time when asked to join a

decision-making session.

7.5. Comparison with other election algorithms

Table 7 compares GFEA with other classic ring

election algorithms using our performance matrix based

on execution time, number of exchanged messages, and

maximum resident memory. These algorithms were tested

using MPI4Py on a local machine composed of a 64-bit

Intel 6600HQ processor and 16 GB of RAM.

Table 7. Performance comparison.

Election

Algorithm

Execution

Time (ms)

Number of

Exchanged

Messages

Max Resident

Memory

(MB)

GFEA 131 154 35

Ring 172 24 34.56

LCR 147 34 34.79

Bully 21 96 18.38

Table 8 compares the proposed GFEA algorithm with

modern election algorithms that exist in the literature. The

comparison is based on the functionality it satisfies, the

time complexity of the worst case in Big O(n) notation,

the message complexity in the worst case, the UID of the

elected leader, and the UID of the backup.

From Table 7 we can see that GFEA is faster than Ring

and LCR, however, it is slower than Bully. GFEA also

consumes more memory and exchanges more messages

than other algorithms. This is mainly because GFEA goes

through 12 rounds as it considers multiple election criteria

rather than just basing the election on the UID, like the

Ring, LCR, and Bully. The compared algorithms apply to

human elections. However, they are not optimized for

humans. Because the criteria considered in these

algorithms are not human-related. This would result in

choosing a facilitator solely based on their machine’s

performance while ignoring experience and security

criteria, which is not suitable for the facilitator role. The

privacy-preserving election algorithm [11] uses votes to

determine a leader. This is a common approach used in

human elections. However, it’s still very limited and

subjective.

The GFEA algorithm showcases the strengths and

weaknesses of each DM. Because contrary to algorithms

like FRLLE and Resource-based [3], [21] it doesn’t

combine all criteria into one single value before the

election, but rather builds the score progressively during

the election. This is because the score can’t be calculated

solely based on the individual list, instead, the best value

across all nodes is needed to determine the best node in

each criterion, and then its weight is added to the score.

This represents an advantage to GFEA, as it uses a global

view instead of a local one.

Table 8. Comparison of the proposed election algorithm with existing algorithms.

Algorithm

Satisfied

Functionality

Worst Time

Complexity

Worst Message

Complexity
Elected Leader Backup Leader

GFEA All O(mn²) O(mn²) DM1 DM2

Ring [24] None O(n²) O(n) DM6 No

LCR [25] None O(n²) O(n) DM6 No

Bully [27] None O(1) O(n²) DM6 No

FRLLE [21] Recovery O(n) O(n²) DM1 No

Top-K [16] Backup Not Specified Not Specified DM6 DM3

SEALEA [14] Backup Not Specified Not Specified DM6 DM3

DRLEF [17] Backup Not Specified Not Specified DM3 DM5

Privacy-Preserved

[11]
Tie-break Not specified O(d(G).n.p) DM4 No

Multi-attribute [23] Multi-criteria O(n.D) O(n.l) DM2 No

Science, Engineering and Technology Vol. 5, No. 2, Online First

Online First

Additionally, no fictitious reference values are used for

defining what’s the best value in each criterion. As a

replacement, the actual best values present within the

performance matrix are used as a reference. Another plus

that puts GFEA in a more favorable position is that,

instead of using random weights or weights fixed by

human judgment, like in FRLLE and Resource-based [3],

[21], it uses MEREC [10] which is a formal objective

weighting method. The weights affect the final score of

nodes; thus, they can alter the elected leader and backup

leader. Furthermore, in contrast to the existing election

algorithms, the proposed algorithm considers the failure

and recovery of the initiator node. This aspect is neglected

in most of the related works. Moreover, the tie-break

mechanism integrated within GFEA considers the

election criteria instead of just relying on the UID. Plus, it

gives priority to the most important criteria. This ensures

that the proposed algorithm always elects the most

suitable node for the leader position by satisfying the

election criteria.

If LeLann, LCR, Bully, or HS algorithms [24], [25],

[26], [27] were applied to our case study, then DM 6

would have been elected as the leader. Despite DM 6 not

having the best value in any criterion and having the worst

score (zero score), he would still be elected in UID-based

algorithms, because he has the biggest UID. Additionally,

if the smallest UID was considered as the election

criterion, then DM 1, who is the most suitable expert for

the role, would win the election. However, this approach

is not reliable, as the UID in our case indicates the joining

order. Meaning that if DM 6 was the first to join the

session, then he would be elected as the leader despite him

being the worst fit for the leader role. Consequently, the

UID alone cannot be the determining factor for the

suitability of a DM for the leader role. Additionally, in

GFEA, only one node can detect the leader failure, and

only one node can initiate the election at a time. This is a

considerable advantage when knowing that in classical

ring election algorithms, multiple nodes can detect the

leader's failure and initiate multiple elections at the same

time [25].

8. Conclusion & Future Directions

This work introduces a new distributed leader election

algorithm designed specifically for electing a human

GDSS facilitator. The system considered is a fault-

tolerant unidirectional ring synchronous system, in which

each node represents a DM, and they communicate via

message passing. The proposed algorithm integrates

multiple election criteria falling into security, experience,

and network performance categories. These criteria are

weighted using the MEREC method. Furthermore, GFEA

reserves a backup leader to replace the facilitator in case

the connection fails between the facilitator and the GDSS.

This saves time and avoids halting the group decision-

making session. Additionally, this algorithm doesn’t use

the UID to break a possible tie. Instead, it uses a new tie-

breaking mechanism that searches for the DM who has an

advantage in the most important election criteria.

Moreover, the failure and recovery of both the initiator

and the leader are handled efficiently. No existing election

algorithm has integrated all these features. Finally, GFEA

is flexible and can be applied to the classical leader

election problem in distributed systems by changing the

election criteria to machine-related criteria, such as CPU

and memory load.

The proposed Algorithm has certain limitations. Its

robustness compromises performance and adds network

overhead. GFEA is much slower and uses many more

messages when compared to other classical ring

algorithms, such as Ring and LCR. Mainly because of

considering multiple election criteria and taking into

account the failure of the initiator. However, the

performance can be improved by optimizing the

algorithm and reducing its time and message complexity.

This paper identifies several areas for future

development of the GFEA algorithm. First, the algorithm

should be tested in large-scale networks to see the impact

of increasing the number of nodes. Secondly, a

comparison should be conducted between distributed

election algorithms and the multi-criteria approach for

selecting a GDSS facilitator. To further validate and refine

the GFEA algorithm, real-world expert feedback is

crucial. Additionally, the algorithm's adaptability to

different network topologies warrants investigation.

Finally, other objective methods should be tested with

GFEA to see how changing the weights affects the final

ranking of the DMs.

Science, Engineering and Technology Vol. 5, No. 2, Online First

Online First

Competing Interest Statement

The authors declare that they have no known

competing financial interests or personal relationships

that could have influenced the work reported in this paper.

Data Availability Statement

No additional data or materials were utilized for the

research described in the article.

Statement on the Ethical Use of AI Tools

“Quillbot” was used to rephrase sentences that

originate from other scientific works cited in this paper.

“Microsoft Copilot” was used to spot the similarities

between the problematics of electing a leader node in a

distributed system and electing a GDSS facilitator.

Author Contribution Roles

Author 1: Writing – original draft, Visualization,

Validation, Software, Methodology, Conceptualization,

Investigation, Formal analysis.

Author 2: Writing – review and editing, Methodology,

Supervision, Project administration.

References

[1] R. Mahajan, P. R. Patil, M. Shahakar, and A. Potgantwar,

“An analytical evaluation of various approaches for load

optimization in distributed system,” International Journal

of Intelligent Systems and Applications in Engineering,

vol. 12, no. 1S, pp. 526–548, 2023.

[2] J. T. Fornerón Martínez, F. Agostini, and D. L. La Red

Martínez, “Resource and process management with a

decision model based on fuzzy logic,” International

Journal of Interactive Multimedia and Artificial

Intelligence, vol. 8, no. 2, pp. 134–149, 2023, doi:

10.9781/ijimai.2023.02.009.

[3] T. Biswas, R. Bhardwaj, A. K. Ray, and P. Kuila, “A

novel leader election algorithm based on resources for

ring networks,” International Journal of Communication

Systems, vol. 31, no. 10, Jul. 2018, doi: 10.1002/dac.3583.

[4] J. S. Ereifej, “Impact of group decision support system

(gdss) on organizational decision making in

telecommunication sector in jordan,” We’Ken-

International Journal of Basic and Applied Sciences, vol.

2, no. 2, pp. 15, Dec. 2017, doi:

10.21904/weken/2017/v2/i2/120588.

[5] G. DeSanctis and B. Gallupe, “Group decision support

systems,” ACM SIGMIS Database: the DATABASE for

Advances in Information Systems, vol. 16, no. 2, pp. 3–10,

Dec. 1984, doi: 10.1145/1040688.1040689.

[6] K. J. Euske and D. R. Dolk, “Control strategies for group

decision support systems: An end-user computing

model,” Eur J Oper Res, vol. 46, no. 2, pp. 247–259, May

1990, doi: 10.1016/0377-2217(90)90135-X.

[7] S. French, “Web-enabled strategic GDSS, e-democracy

and Arrow’s theorem: A Bayesian perspective,” Decision

Support Systems, vol. 43, no. 4, pp. 1476–1484, Aug.

2007, doi: 10.1016/j.dss.2006.06.003.

[8] M. Limayem, J. E. Lee-Partridge, G. W. Dickson, and G.

DeSanctis, “Enhancing GDSS effectiveness: automated

versus human facilitation,” in [1993] Proceedings of the

Twenty-sixth Hawaii International Conference on System

Sciences, Wailea, HI, USA: IEEE, Jan. 1993, pp. 95–101.

doi: 10.1109/HICSS.1993.284171.

[9] S. Mohammedi Taieb and M. A. Laredj, “Proposition of a

new tool for the election of group decision support system

facilitator based on the multi-criteria approach,”

STUDIES IN ENGINEERING AND EXACT SCIENCES,

vol. 5, no. 2, pp. 01–25, Oct. 2024, doi:

10.54021/seesv5n2-303.

[10] M. Keshavarz-Ghorabaee, M. Amiri, E. K. Zavadskas, Z.

Turskis, and J. Antucheviciene, “Determination of

objective weights using a new method based on the

removal effects of criteria (MEREC),” Symmetry (Basel),

vol. 13, no. 4, pp. 525, Mar. 2021, doi:

10.3390/sym13040525.

[11] L. Sperling and S. S. Kulkarni, “Privacy-preserving

methods for outlier-resistant average consensus and

shallow ranked vote leader election,” Jan. 2023, doi:

https://doi.org/10.48550/arXiv.2301.11882.

[12] F. Jiang, Y. Cheng, C. Dong, and E. Yu, “A novel weight-

based leader election approach for split brain in

distributed system,” in IOP Conference Series: Materials

Science and Engineering, Wuhan, China: Institute of

Physics Publishing, Nov. 2020, pp. 012005. doi:

10.1088/1757-899X/719/1/012005.

[13] Y. Luo, Y. Chen, Q. Chen, and Q. Liang, “A new election

algorithm for DPos consensus mechanism in blockchain,”

in Proceedings - 7th International Conference on Digital

Home, ICDH 2018, Guilin, China: Institute of Electrical

and Electronics Engineers Inc., Feb. 2019, pp. 116–120.

doi: 10.1109/ICDH.2018.00029.

[14] M. A. Haddar, “SEALEA: scalable and energy aware K-

leaders election algorithm in IOT wireless sensor

networks,” Wireless Personal Communications, vol. 125,

no. 1, pp. 209–229, Jul. 2022, doi: 10.1007/s11277-022-

09547-8.

[15] H. C. Cahng and C. C. Lo, “A consensus-based leader

election algorithm for wireless ad hoc networks,” in

Proceedings - 2012 International Symposium on

Computer, Consumer and Control, IS3C 2012, Taichung,

Taiwan: IEEE, Jun. 2012, pp. 232–235. doi:

10.1109/IS3C.2012.66.

[16] V. Raychoudhury, J. Cao, R. Niyogi, W. Wu, and Y. Lai,

“Top K-leader election in mobile ad hoc networks,”

Science, Engineering and Technology Vol. 5, No. 2, Online First

Online First

Pervasive and Mobile Computing, vol. 13, no. 1, pp. 181–

202, 2014, doi: 10.1016/j.pmcj.2013.10.003.

[17] N. Elsakaan and K. Amroun, “Distributed and reliable

leader election framework for wireless sensor network

(DRLEF),” in Lecture Notes in Networks and Systems,

vol. 378 LNNS, Springer Science and Business Media

Deutschland GmbH, 2022, pp. 123–141. doi:

10.1007/978-3-030-95918-0_13.

[18] A. Julian and J. Marian Jose, “Multi-criteria leader

selection in ad hoc networks using fuzzy analytical

hierarchy process,” in Lecture Notes in Electrical

Engineering, vol. 700, Springer, Singapore, 2021, pp.

2875–2885. doi: 10.1007/978-981-15-8221-9_269.

[19] N. Kadjouh et al., “A dominating tree based leader

election algorithm for smart cities IoT infrastructure,”

Mobile Networks and Applications, vol. 28, no. 2, pp.

718–731, Apr. 2023, doi: 10.1007/s11036-020-01599-z.

[20] A. Favier, L. Arantes, J. Lejeune, and P. Sens, “Centrality-

based eventual leader election in dynamic networks,” in

2021 IEEE 20th International Symposium on Network

Computing and Applications (NCA), Boston, MA, USA:

IEEE, Nov. 2021, pp. 1–8. doi:

10.1109/NCA53618.2021.9685390.

[21] A. Biswas, A. K. Maurya, A. K. Tripathi, and S. Aknine,

“FRLLE: a failure rate and load-based leader election

algorithm for a bidirectional ring in distributed systems,”

the Journal of Supercomputing, vol. 77, no. 1, pp. 751–

779, Jan. 2021, doi: 10.1007/s11227-020-03286-y.

[22] L. A. Rodrigues, A. E. S. Freitas, E. P. Duarte Jr., and V.

Fulber-Garcia, “A hierarchical adaptive leader election

algorithm for crash-recovery distributed systems,” in

Proceedings of the 13th Latin-American Symposium on

Dependable and Secure Computing, New York, NY,

USA: ACM, Nov. 2024, pp. 136–145. doi:

10.1145/3697090.3697102.

[23] A. Biswas, M. Singh, G. Baranwal, A. K. Tripathi, and S.

Aknine, “Multi-attribute-based self-stabilizing algorithm

for leader election in distributed systems,” the Journal of

Supercomputing, vol. 81, no. 4, pp. 556, Feb. 2025, doi:

10.1007/s11227-025-07043-x.

[24] G. Le Lann, “Distributed systems-towards a formal

approach,” IFIP Congress, vol. 7, pp. 155–160, 1977.

[25] E. Chang and R. Roberts, “An improved algorithm for

decentralized extrema-finding in circular configurations

of processes,” Communications of the ACM, vol. 22, no.

5, pp. 281–283, May 1979, doi: 10.1145/359104.359108.

[26] D. S. Hirschberg and J. B. Sinclair, “Decentralized

extrema-finding in circular configurations of processors,”

Communications of the ACM, vol. 23, no. 11, pp. 627–

628, Nov. 1980, doi: 10.1145/359024.359029.

[27] Garcia-Molina, “Elections in a distributed computing

system,” IEEE Transactions on Computers, vol. C–31,

no. 1, pp. 48–59, Jan. 1982, doi:

10.1109/TC.1982.1675885.

[28] A. Laredj, B. Rouba, and C. Duvallet, “Multi-criteria

decision aid for group facilitator election: Application to

a collaborative e-maintenance process,” International

Journal of Decision Support System Technology, vol. 11,

no. 1, pp. 93–102, Jan. 2019, doi:

10.4018/IJDSST.2019010105.

[29] A. Salo, R. P. Hämäläinen, and T. J. Lahtinen,

“Multicriteria methods for group decision processes: an

overview,” in Handbook of Group Decision and

Negotiation, Cham: Springer, Cham, 2021, pp. 863–891.

doi: 10.1007/978-3-030-49629-6_16.

[30] A. Adla, P. Zarate, and J. L. Soubie, “A proposal of toolkit

for GDSS facilitators,” Group Decision and Negotiation,

vol. 20, no. 1, pp. 57–77, Jan. 2011, doi: 10.1007/s10726-

010-9204-8.

[31] A. Ristono, P. -, P. B. Santoso, and I. P. Tama, “A

literature review of criteria selection in supplier,” Journal

of Industrial Engineering and Management, vol. 11, no.

4, pp. 680, Oct. 2018, doi: 10.3926/jiem.2203.

[32] E. Y. Wirawan and R. Jayadi, “Business study of network

provider development in XYZ industry area with NNI

modeling (Network to Network Interface) as a stage

towards smart industrial park 2021,” Journal of

Theoretical and Applied Information Technology, vol. 99,

no. 6, pp. 1361–1372, Mar. 2021.

[33] N. H. Zardari, K. Ahmed, S. M. Shirazi, and Z. Bin

Yusop, “Weighting methods and their effects on multi-

criteria decision making model outcomes in water

resources management,” in SpringerBriefs in Water

Science and Technology. Cham: Springer Cham, 2015.

doi: 10.1007/978-3-319-12586-2.

[34] G. O. Odu, “Weighting methods for multi-criteria

decision making technique,” Journal of Applied Sciences

and Environmental Management, vol. 23, no. 8, pp. 1449,

Sep. 2019, doi: 10.4314/jasem.v23i8.7.

[35] F. Ecer and E. Aycin, “Novel comprehensive MEREC

weighting-based score aggregation model for measuring

innovation performance: the case of G7 countries,”

Informatica, vol. 34, no. 1, pp. 53–83, Sep. 2023, doi:

10.15388/22-INFOR494.

[36] K. Choumas and T. Korakis, “On using raft over

networks: improving leader election,” IEEE Transactions

on Network and Service Management, vol. 19, no. 2, pp.

1129–1141, Jun. 2022, doi:

10.1109/TNSM.2022.3147958.

[37] D. Hedjazi, “Constructing collective competence: a new

CSCW-based approach,” International Journal of

Information and Communication Technology, vol. 12, no.

3/4, pp. 393, 2018, doi: 10.1504/IJICT.2018.090418.

[38] M. A. Laredj and K. Bouamrane, “Workflow specification

for interaction management between experts in a

cooperative remote diagnosis process,” Computer Science

and Information Systems, vol. 8, no. 3, pp. 573–590, 2011,

doi: 10.2298/csis100326001l.

[39] A. Kovacevic, O. Heckmann, N. C. Liebau, and R.

Steinmetz, “Location awareness-improving distributed

multimedia communication,” Proceedings of the IEEE,

vol. 96, no. 1, pp. 131–142, 2008, doi:

10.1109/JPROC.2007.909913.

