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Abstract 

Group decision support systems (GDSSs) are computer-assisted collaborative work software that facilitates group 

meetings asynchronously and from different locations. Even so, collaborative work in GDSS demands coordination 

provided by a single controlling entity known as the GDSS facilitator. However, the problem of electing a GDSS 

Facilitator hasn’t been treated enough in the literature, and it is often neglected. Despite that, the large number of 

responsibilities assigned to the facilitator makes his role crucial to the effectiveness of the group meeting. Thus, the 

authors focused on finding an appropriate approach for electing the facilitator. The similarities between the problematics 

of electing a GDSS facilitator and a distributed system leader led the authors to consider applying a distributed election 

algorithm for electing a GDSS facilitator. Nonetheless, current algorithms only consider computer criteria and lack a 

formal weighting method. Consequently, we proposed a new distributed election algorithm called GFEA (GDSS 

Facilitator Election Algorithm) that is designed to choose a facilitator within a GDSS. This algorithm selects a facilitator 

among a set of decision-makers based on multiple election criteria weighted using an objective weighting method called 

MEREC. A backup leader is reserved to replace the leader if he fails, and a new tie-breaking mechanism is proposed. 

Moreover, the initiator failure is handled. By adopting distributed system leader election principles, GFEA provides a 

robust solution for a decisive GDSS challenge. 
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1. Introduction 

A distributed system is a group of computers or mobile 

devices connected through a network. These devices work 

together, appearing as a single unit to users, to achieve a 

common goal and deliver a service [1]. These systems are 

employed in various fields, they are integrated into 

banking networks, smart container systems, smart plants, 

industry 4.0, IoT, smart cities, and many other application 

cases [2]. Coordinating the nodes within the system is the 

leader’s responsibility. The system’s leader is responsible 

for allocating resources, balancing the load on the 

different nodes, coordinating the consensus regarding 

replicated data, and handling deadlock situations [3]. 

GDSS (Group Decision Support System) is a DSS 

(Decision Support System) that’s designed to be used by 

a group of DMs (Decision Makers), who communicate 

using a communication subsystem. It’s a combination of 

a group of humans, hardware, and software. The GDSS 

enhances the group decision-making process of 

organizations [4]. The humans using the GDSS are 

grouped into two roles: the DMs and the facilitator [5]. It 

is necessary to have a human facilitator within a GDSS  

[4]. The traditional decision room is composed of multiple 

computers connected using a local network [6]. 

Nonetheless, it can also be extended to support connecting 

DMs who are geographically dispersed through the 

internet [7]. One of the DMs is handed an important role 
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called the facilitator role. The GDSS facilitator is 

responsible for various tasks. He walks the DMs through 

the meeting’s agenda and starts the group conversation. 

Additionally, the facilitator can bring up new ideas if the 

DMs agree with that. Moreover, he can enhance the 

performance and effectiveness of the group. Furthermore, 

the facilitator helps the DMs use the technologies and do 

their tasks. On top of this, he has to clarify the results of 

the meeting [8]. 

Despite the importance and the significant number of 

roles assigned to the GDSS facilitator, there hasn’t been 

enough attention regarding the selection of a GDSS 

facilitator. Consequently, this work is dedicated to 

designing a solution for this problematic. This 

problematic is formulated using the following questions: 

Among the set of DMs, how can we select one of them 

and assign him the role of GDSS facilitator? and how are 

DMs evaluated to find the most suitable DM for the 

facilitator role? Due to the similarities between the 

problematic of electing a leader in distributed systems and 

the problematic of electing a GDSS facilitator, the 

distributed leader election algorithm represents a potential 

solution to the problematic of this work. Despite that, the 

solution must satisfy five requirements to be suitable for 

the problematic at hand. These requirements are: 

Consideration of multiple election criteria, inclusion of 

human-related criteria, a formal weighting method, a 

backup leader, and the ability to handle the failure and 

recovery of both the leader and the election initiator. 

Among the various election algorithms that have been 

suggested in the literature (see Literature Review), some 

works integrate some of the required features for electing 

a GDSS facilitator. But no algorithm satisfies all the 

requirements of this problematic. Additionally, no 

distributed election algorithm optimized for this 

problematic has been proposed. Moreover, the existing 

algorithms are optimized for distributed machines and not 

humans. The work in [8] proposes an election algorithm 

based on the load and failure rate of the nodes. While this 

algorithm involves multiple criteria, it doesn’t consider 

any human-related criterion, plus it doesn’t specify a 

formal weighting method. 

In this paper, a new distributed election algorithm 

designed for the GDSS facilitator election is proposed. 

The proposed algorithm considers multiple election 

criteria, including human experience, while using a proper 

weighting method to indicate the importance of each 

criterion, thus influencing the final results. Furthermore, 

the algorithm elects not only the facilitator but also a 

backup leader. Moreover, the GFEA (GDSS Facilitator 

Election Algorithm) satisfies all three correctness 

properties and adds a new tie-breaking mechanism that 

considers the most important criteria instead of just 

relying on the UID (Unique Identifier). On top of that, the 

algorithm is fault-tolerant and considers the disconnection 

of DMs, the leader, and even the initiator. This algorithm 

can also be applied to machines by changing the election 

criteria according to the problem at hand. This algorithm 

allows us to solve the problematic of electing a GDSS 

facilitator formally and objectively, that doesn’t involve 

subjective parameters. Thus, eliminating biases and 

human conflicts that could arise when using a subjective 

approach like multi-criteria decision-making methods [9]. 

The main contributions of the proposed work are as 

follows: 

- Comparison between recent election algorithms 

designed for distributed systems, and spotting 

similarities between the problematic of electing a 

GDSS facilitator and the problematic of electing a 

leader for a distributed system. By exploiting these 

similarities, it is demonstrated that the distributed 

election algorithms can be effectively adapted to 

solve the problematic of electing a GDSS facilitator. 

- Proposition of the GFEA algorithm optimized for the 

problematic of electing a GDSS facilitator based on 

human experience, security, and network 

performance criteria. 

- Brief comparison between multiple objective 

weighting methods. 

- Use of the objective weighting method MEREC [10] 

to fix the election criteria weights. 

- GFEA robustness stems from the integration of 

several features like reserving a backup leader, 

improved tie-breaking mechanism that prioritizes 

criteria, leader recovery, and tolerance to both 

initiator and leader failure. 

- The three correctness properties are proven to be 

satisfied by the proposed election algorithm, and for 

the evaluation, GFEA was tested on the collaborative 

e-maintenance process. 

- Comparison of the proposed algorithm with other 

recent algorithms in terms of functionalities, 

performance, and results. 



Science, Engineering and Technology  Vol. 5, No. 2, Online First 

 

 

Online First 

This research paper is organized in the following 

manner. The second section compares multiple 

distributed election algorithms. The following section 

introduces the election criteria obtained using the Delphi 

method, and presents the objective weighting method 

MEREC used to fix the election criteria weights. The 

fourth section gives information about the system model, 

including the topology, assumptions, and notations. Next, 

the proposed algorithm, GFEA, is detailed in section five. 

The algorithm’s complexity is analyzed in Section six. 

The seventh section explains the case study of 

collaborative e-maintenance on which we tested and 

illustrated the execution of GFEA. Additionally, this 

section compares different objective weighting methods 

and discusses the obtained election results. Furthermore, 

GFEA is compared to other related works based on 

performance, functionalities, and results. Finally, the 

paper is concluded, and future directions are explored. 

 

2. Literature Review 

This section reviews multiple leader election 

algorithms designed for distributed systems. One of the 

newest works is a paper written by Sperling et al. [11], 

which proposed an election algorithm designed for 

asynchronous distributed systems. This algorithm 

presents a new voting procedure called shallow ranked 

voting, which allows the processes to vote for two 

processes. This algorithm guarantees the privacy of 

voters. The votes are encrypted using the CKKS (Cheon, 

Kim, Kim, and Song) method, which is a homomorphic 

encryption method. Meaning that we can make 

approximate calculations on the encrypted data without 

having to decrypt it. This hides the identity of the voters 

as well as that of the top candidates who are most likely 

to win the election. If the primary choice doesn’t win the 

election, the secondary choice gets the vote. This is also 

used for tie-breaking when two or more processes have 

the majority of votes. To break a tie, the process with the 

smallest number of votes is eliminated, and its voters’ 

second choices take its votes. Since the UID is not used to 

break the tie, this ensures the privacy of the top 

candidates. Nevertheless, this work didn’t consider 

multiple election criteria, a backup, or the recovery of the 

leader. 

Jiang et al. [12] proposed a leader election approach 

based on node weight in the case of split-brain, which is a 

special case of partitioning when a network is divided into 

two partitions only. The election starts when the leader 

doesn’t receive a heartbeat signal from the other servers 

or finds a node with a higher weight. The weight indicates 

the service level of a node. The leader is the one who gets 

the majority of votes. The nodes with the minimum 

weight will ensure the high availability of the system. This 

approach has less unavailable time than detection node-

based and region leader-based approaches. The arbitration 

program also uses only 2% of the CPU's full capacity. On 

the other hand, the authors didn’t write a formal 

algorithm, nor did they analyze the time and message 

complexity of their approach. 

Luo et al. [13] proposed an algorithm for the election 

of the block generator in the consensus mechanism of 

DPoS (Delegated Proof of Stake). They modified the 

Chang & Roberts ring algorithm by adding Stake Value. 

During the election, this value will be multiplied by a 

random value. But if the candidate who sent an election 

message has already been a leader before. Then, his Stake 

Value will be multiplied by zero to ensure equality and 

avoid monopoly. Its message complexity is 2n. 

Nonetheless, this algorithm doesn’t have a tie-break 

mechanism, nor does it consider a backup leader. 

Haddar [14] proposed a scalable and energy-aware k-

leaders election algorithm designed for IoT wireless 

sensor networks. Election starts from the initiators who 

broadcast an election message that helps to create a tree 

whose root is the initiator. The initiator receives the 

possible leaders of its neighbors and sends a Winner 

message to the k-highest weight nodes and a Looser 

message to the remaining nodes. The authors compared 

their algorithm to the other two top K-leader algorithms 

(WiLE and Top-K). Their algorithm gave better results in 

the number of messages and bytes transmitted in GRID 

and fully connected graph topologies with various 

network sizes. The residual energy was almost the same 

in the three algorithms. But the authors say their algorithm 

also consumes less power due to the reduced number of 

exchanged messages. On the other hand, they did not 

specify how the weights were calculated for the election 

criteria. Instead, they used random weights in the 

experiments. 

Cahng and Lo [15] proposed a consensus-based leader 

election algorithm for wireless Ad Hoc networks, which 

is based on Bully and Paxos algorithms. It has a fault 
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detection mechanism through finder nodes for detecting if 

the leader has left or crashed. The criteria used for election 

are residual battery power & node degree. The identifier 

is called "Vote" and is calculated based on these two 

criteria. The consensus consists of accepting only higher 

priority proposals and denying others. The proposed 

algorithm’s message complexity is O(n). As future work, 

they proposed to ensure message integrity. Despite 

considering more than one election criterion, weights 

were not assigned. 

Raychoudhury et al. [16] proposed an algorithm that 

elects the K-highest weighted nodes as leaders in each 

connected component of mobile ad hoc networks. The 

weight of a node indicates its available resources. There 

are 3 types of nodes: White nodes, which are the normal 

nodes, Green nodes, which are backups for the Red nodes, 

and Red nodes, which are the highest-weight neighbors. 

Red nodes are considered as local coordinator nodes in the 

sense that they help collect the nodes' weights and forward 

them to the highest-weighted red node. The red node with 

the highest weight in a connected component is going to 

select the top-k nodes based on their weight and elect 

them as leaders. This algorithm is fault-tolerant and 

message-efficient. It is also designed with topological 

changes in mind that could lead to network partitions. 

Moreover, it reserves a backup leader in case a red node 

crashes. However, this algorithm is based only on one 

election criterion, and doesn’t consider the recovery of a 

failed leader. 

DRLEF (Distributed and Reliable Leader Election 

Framework) was proposed in [17] by Elsakaan and 

Amroun consists of choosing an authentication server 

from a set of gateways. These gateways coordinate the 

network of wireless sensors. There are two types of nodes: 

Gateways and Sensor Nodes. There will be local elections 

in each area of the WSN (Wireless Sensor Network). The 

centrality here was measured by the deviation method. If 

the deviation exceeds a certain threshold, then the GW 

will not participate in the election. The gateway with the 

maximum number of GWs as direct neighbors is called 

the CGW (Central Gateway). Gateways send candidacy 

messages to the CGW. The candidate GWs are ranked 

based on the centrality criterion, and the best one is going 

to be elected as the leader. The other GWs enter 

hibernation mode, they are kept as backups in case the 

leader fails. This eliminates the need to redo the election 

process. However, the DRLEF algorithm does not 

guarantee election in severe mobility circumstances. 

Additionally, it doesn’t consider multiple election criteria 

or the leader's recovery. 

Julian and Marian Jose [18] used the fuzzy analytic 

hierarchy process to elect a cluster head in ad hoc 

networks. The leader is elected based on his weight. The 

node’s weight is calculated based on seven criteria, which 

are: node degree, transmission range, mobility, residual 

energy, trust value, status of the node, and fairness of the 

node. Using this approach has several advantages. First, it 

eliminates inconsistencies in selection criteria. Secondly, 

the fuzzy variation of AHP removes duplicate weights. 

Additionally, it has better performance than the standard 

WCA (Weighted Clustering Algorithm). On top of that, 

the nodes’ mobility is taken into consideration. Finally, 

we obtain a ranking of the nodes from best to worst. In 

contrast, the authors didn’t consider the failure of the 

leader, the recovery of the failed nodes, or the addition of 

new nodes. 

Kadjouh et al. [19] presented a dominating tree-based 

leader election algorithm (DoTRo) designed for smart 

cities IoT networks. It uses the local minima finding 

algorithm (MinFind) to discover the local minimum 

values within the network. Afterwards, each local 

minimum is going to be the root that initiates a spanning 

tree. When two spanning trees come in contact, the tree 

with the smaller value continues the flooding process 

while the other one stops. Next, the local minima will wait 

a maximum duration so their flooding processes can end. 

After this maximum time, if a local minimum node 

doesn’t receive a message, then it becomes the leader. 

This algorithm is energy efficient, fault-tolerant, and 

reduces the number of sent and received messages when 

compared to MinFind. In contrast, this work didn’t deal 

with security issues. Besides, no backup leader was 

considered, and the election is solely based on one value. 

Favier et al. [20] introduced a novel centrality-based 

eventual leader election algorithm that works in dynamic 

networks. The leader in this algorithm has to be in the 

center of the network. Each node knows its neighbors and 

the neighbors of its neighbors. A leader is elected in each 

component. When a node detects a change in its 

neighborhood, it updates its knowledge and emits its new 

view of the network. Nonetheless, there are some 

drawbacks to this algorithm. Firstly, if the nodes do not 

have the same knowledge, then they can choose different 
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leaders. Secondly, this algorithm only considers the 

criterion of distance between the nodes. In addition, the 

size of the messages can be important since each node 

uses map structures, and the message must respect the 

MTU (Maximum Transmission Unit) of the network 

packet. This requires compression algorithms to reduce 

the size of the exchanged messages. It is possible to use 

collaborative calculations to calculate the centralities and 

thus save time. Moreover, this work didn’t take into 

account multiple election criteria and leader recovery. 

Biswas et al. [3] proposed a new resource-based leader 

election algorithm, which selects the leader based on 

resource strength. Resource strength is calculated based 

on three criteria: CPU, memory, and remaining battery for 

mobile nodes. Each node has a queue with all the nodes 

present on the system. After that, the queue is sorted in 

descending order to place the node with the highest 

resource strength at the beginning of the queue and thus 

choosing it as the leader. This algorithm also takes into 

consideration the addition and removal of nodes from the 

system using update messages. However, the authors did 

not consider the security aspects of nodes joining the 

system. Moreover, the frequent addition and removal of 

nodes slow down the system. Plus, no formal weighting 

method was specified to determine the importance of each 

election criterion. 

Another work by Biswas et al. [21] presented a novel 

failure rate and load-based leader election algorithm 

(FRLLE) for bidirectional ring topology in synchronous 

distributed systems. This algorithm selects the node with 

the minimum leader coefficient to be the leader. The 

leader coefficient is computed based on several criteria, 

which are: average CPU usage, memory usage, bandwidth 

usage, and failure rate. The elected leader is the node with 

the minimum failure rate and minimum load, to ensure a 

stable leader with high performance. The proposed 

algorithm is faster and exchanges fewer messages than 

other classical ring-based algorithms. However, the 

authors didn't specify a formal method to fix the leader 

coefficient criteria weights, and didn’t assign a backup for 

the leader. Additionally, the authors didn’t consider the 

failure of the initiator nodes. Moreover, the authors 

considered the best-case complexity when the failed 

leader recovers, instead of considering the best case of a 

new election. 

Rodrigues et al. [22] proposed a new hierarchical 

adaptive leader election algorithm for static distributed 

systems that support the recovery of failed nodes. This 

algorithm is designed for the vCube logical topology. The 

algorithm selects the process with the smallest UID 

among the processes that are the most stable. The stability 

of every process is measured by its incarnation, which is 

a variable that counts the number of recoveries that a 

process has had. Initially, all processes elect process 0 as 

the leader. Afterwards, if the leader recovers after a 

failure, its incarnation is updated and the second most 

stable process replaces the leader. A penalty is applied to 

nodes that fail and recover to avoid being stuck with the 

same unstable leader. Even though this algorithm brings 

several contributions, it does not consider multiple 

criteria. 

A recent work by Biswas et al. [23] proposed a leader 

election algorithm that takes into consideration multiple 

quality attributes of the leader. This algorithm is made for 

partially synchronous networks with arbitrary topology, 

so it doesn't depend on a specific topology. The quality 

attributes of the leader are determined by human experts. 

The attributes are fixed by uniting the sets of attributes 

proposed by each expert. Consequently, these attributes 

change according to the system requirements. Afterward, 

the attribute weights are calculated based on the 

preference of experts using pair-wise comparison 

matrices that show each expert's preference regarding 

each pair of quality attributes. The leader is elected based 

on a score called the quality factor, which is obtained 

using a modified version of the MCDA method TOPSIS. 

The algorithm ensures that the system recovers to its 

correct state after failures and partitioning, thus, it is fault-

tolerant. In this algorithm, a node sends election election-

initiating message to adjacent nodes, which are 

considered child nodes. Child nodes send back the 

maximum quality factor of their children to their parent 

nodes. A node that receives a message twice becomes a 

co-parent node. The algorithm required less election time 

and less communication overhead when compared to the 

PALE algorithm. It was also compared to other algorithms 

in terms of functionality and complexity. The multi-

attribute algorithm is tolerant to partitioning. On the 

opposite side, this paper didn't consider assigning a 

backup leader, meaning, when the leader fails, the election 

algorithm has to be executed again. In addition, the 

weighting method used is subjective. 
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Other classical and popular algorithms like LeLann, 

LCR, HS, and Bully algorithms [24], [25], [26], [27] rely 

solely on the UID to determine the leader and don’t 

reserve a backup leader.  

Table 1 compares between the previously discussed 

election algorithms based on functionality and 

complexity. 

Laredj A. et al. tackled the problematic of electing a 

coordinator within a collaborative e-maintenance process 

[28]. They used the ELECTRE I MCDA method to elect 

one of the experts as the coordinator. This method resulted 

in a partial ranking of the experts. Meaning, some experts 

were incomparable. The experts were evaluated based 

only on five criteria: experience as an expert, network 

speed, distance to breakdown site, coordinator 

experience, and response time. In addition, the weights 

were fixed without using a formal weighting method. 

Moreover, using an MCDA method that doesn’t provide 

a complete ranking of the experts resulted in the absence 

of a backup leader who would handle the process in case 

the connection between the coordinator and technicians is 

lost. This requires running another iteration of the election 

process just to replace the former leader. Furthermore, 

their work didn’t contain visual charts that should help in 

analyzing and comparing the different experts. Finally, 

this paper didn’t evaluate the performance and quality of 

using the ELECTRE I method on their example. 

Mohammedi Taieb and Laredj [9] proposed a multi-

criteria approach for electing the GDSS facilitator. The 

authors used the Analytic Hierarchy Process to fix the 

election criteria weights. Then, applied MAUT, SAW, 

TOPSIS, and PROMETHEE II on a collaborative e-

maintenance case study to find the most suitable method 

among the four for electing a facilitator. MAUT and 

PROMETHEE II gave similar results. Their comparison 

showed that PROMETHEE II was easier to use than 

MAUT and had a better performance.

 

Table 1. Comparison between existing election algorithms. 
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Table 1 (continued). Comparison between existing election algorithms. 
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3. Methodology and Election Criteria 

The GDSS facilitator has to make sure that each 

participant expresses their worries. Additionally, he/she 

guarantees that the opinions of the DMs are mapped 

correctly. Furthermore, the facilitator has to make certain 

that the methods and procedures are used faultlessly while 

considering potential human biases. Moreover, he/she 

informs the participants of the implicit assumptions 

related to the used methods. Finally, the outcome of the 

decision model has to be clarified to the DMs by the 

facilitator [29]. 

Before the group decision-making process starts, the 

GDSS facilitator has to create the meeting agenda and 

select the DMs who will participate in the meeting. 

Throughout the meeting, the facilitator will be responsible 

for the generation, organization and evaluation of the 

alternatives. After the meeting is done, he/she will present 

the final decision to all the participants [30]. 

Distributed leader election algorithms are designed to 

solve the problem of choosing a unique node to be the 

leader of a connected network [14]. Similarly, the 

problematic treated in this paper consists of choosing a 

single DM to be the facilitator of a group of DMs utilizing 

the GDSS. In both problematics, there are multiple 

entities (nodes and DMs) and one controlling entity 

(leader/facilitator). Furthermore, the entities in both fields 

are geographically distant and connected via a network. 

Moreover, in both cases, they can communicate with each 

other via messages. Additionally, the same network 

protocols can be used in both cases. Figure 1 summarizes 

the similarities between the two problematics. 

Election algorithms and the election of a facilitator 

have the same goal, which is to agree on a single leader. 

Both cases require considering certain criteria during the 

election. However, the criteria are mostly different since 

one side concerns machines while the other involves 

humans. Election algorithms have to be fault-tolerant, the 

same as a facilitator needs a backup DM in case he loses 

connection with the other group members. 

These similarities make the election algorithms seem 

like a potential solution to the problematic of electing a 

GDSS facilitator. However, due to the different nature of 

entities and context, an election algorithm designed for 

machines has to be modified to support human elections. 

 

Figure 1. Venn Diagram showing the similarities between 

distributed election algorithms and GDSS. 

The election algorithms that exist in the literature (See 

literature review in section 2) didn’t include all the 

features required for the GDSS facilitator election in one 

single algorithm. Consequently, a potential solution is to 

combine each feature from each algorithm into a new 

election algorithm designed specifically for the 

problematic of GDSS facilitator election. A fulfilling 

algorithm should have a backup leader and should 

consider multiple criteria that are relatable or applicable 

to humans. Additionally, it should use a proper weighting 

method to indicate the importance of each election 

criterion. Furthermore, it should consider the recovery of 

failed nodes, because realistically, DMs can lose their 

connection to the GDSS at any time, and recover their 

connection later on. Finally, in case a tie happens at the 

end of the election, a tie-break mechanism is necessary to 

satisfy the uniqueness property. 

This paper introduces a new election algorithm called 

GFEA, optimized for the election of a GDSS facilitator. 

In addition, an objective weighting method is used to fix 

the election criteria weights. Moreover, the failure and 

recovery of the initiator and the facilitator is handled. 

Finally, a new tie-breaking mechanism is proposed. 

 

3.1. Election criteria 

Gathering facilitator election criteria from DMs 

requires specifying a real-world problem on which we can 

use the GDSS. Among the applicable fields is the 

collaborative e-maintenance process, which was used as a 
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case study (see section 7.1). The DELPHI method [31] 

was applied to gather the criteria for electing a GDSS 

facilitator from industrial maintenance professionals. The 

election criteria fall into 3 main categories, which are the 

DM experience, machine security, and network 

performance. All election criteria, apart from the number 

of treated breakdowns, are general GDSS facilitator 

criteria. However, “Treated breakdowns” is a criterion 

specific to maintenance-related fields such as industrial 

maintenance. The election criteria are described as 

follows: 

1- Experience as a DM: Number of times the DM was 

involved in a group decision-making process 

(beneficial). 

2- Treated breakdowns: This criterion is specific to the 

collaborative e-maintenance process. It represents the 

number of repaired breakdowns (beneficial). 

3- Distance: This criterion measures how far the DM is 

from the breakdown site in Kilometers (non-

beneficial). 

4- Response time: Elapsed time in minutes between the 

announcement of a breakdown and the reception of 

the DM response (non-beneficial). 

5- Coordination experience: Number of times a DM 

has participated as a coordinator (beneficial). 

6- Open ports: Number of open network ports on the 

DM’s machine (non-beneficial). 

7- Vulnerabilities: Number of vulnerabilities present on 

the DM’s machine, obtained using a vulnerability 

scanner (non-beneficial). 

8- Severity sum: Summation of the severities 

corresponding to the detected vulnerabilities. The 

severity is represented by the CVSS (Common 

Vulnerability Scoring System) score of the 

vulnerability (non-beneficial). 

9- Connection Type: of the DM’s internet connection. 

There are 4 possible types: mobile, ADSL, Satellite or 

Fiber. Each one is represented using a numeric score 

based on its stability, speed, and network delay. 

Mobile corresponds to 0.4, ADSL: 0.6, Cable: 0.7, 

Satellite: 0.8, and Fiber is considered the best type of 

internet connection [32] with a score of 1. 

10- Network latency: Average network response time 

between the DM’s machine and the breakdown site, 

measured in milliseconds (non-beneficial). 

11- Download speed: Download speed of the DM’s 

internet connection in Mbps (beneficial). 

12- Upload speed: Upload speed of the DM’s internet 

connection in Mbps (beneficial). 

3.1.1. Weighting method 

There are three types of weighting methods in the 

literature: objective, subjective, and combined. When 

using objective weighting methods, the DMs' subjective 

preferences are not considered [33]. In this work, the 

authors opted for objective methods to keep the election 

algorithm formal and unbiased. Among the popular 

objective methods are: the entropy, mean weight, 

CRITIC, standard deviation, and statistical variance 

methods [34]. There are other newer methods like CILOS, 

IDOCRIW, and MEREC. In MEREC (Method based on 

the Removal Effects of Criteria), the effect of removing a 

criterion on the evaluation of alternatives is used to fix the 

criteria weights [10]. The MEREC weighting method was 

used in this paper to fix the election criteria weights. 

Among the reasons MEREC was chosen instead of 

other objective methods is that it is easy to understand and 

use, since it simply involves applying a set of formulas to 

the values that are already present in the performance 

matrix. In addition, it has a strong mathematical 

foundation [35]. However, this doesn’t mean that other 

objective weighting methods aren’t valid. It is possible to 

use other methods with the proposed algorithm. 

This method takes the performance matrix and the 

criteria types as input. The performance matrix should 

only contain positive, non-zero values. 

 The values corresponding to non-beneficial 

criteria are normalized according to formula (1). While in 

the case of beneficial criteria, the values are normalized 

by applying formula (2) [10]. 

𝑥′𝑖𝑗 =
𝑥𝑖𝑗

max
i

(𝑥𝑖𝑗)
     (1) 

𝑥′𝑖𝑗 =
min

i
(𝑥𝑖𝑗)

𝑥𝑖𝑗
     (2) 

 Next, the general performance 𝐺𝑃𝑖 of each 

alternative i is calculated based on formula (3) [10]. 

𝐺𝑃𝑖 = ln(1 + (
1

𝑚
∑ | ln(𝑥𝑖𝑗

′ ) |𝑗 ))   (3) 

 The following step consists of constructing m sets 

that contain the performance of alternatives when 

removing each criterion j. This performance is calculated 

using formula (4) [10]. Where k represents all criteria 

except criterion j. 
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𝐺𝑃𝑖𝑗
′ = ln(1 + (

1

𝑚
∑ | ln(𝑥𝑖𝑘

′ ) |𝑘,𝑘≠𝑗 ))     (4) 

 In the succeeding step, the removal effect of each 

criterion is calculated using formula (5) [10]. 

𝑅𝐸𝑗 =  ∑ |𝐺𝑃𝑖𝑗
′ − 𝐺𝑃𝑖|𝑛

𝑖=1     (5) 

 Finally, the criteria weights are obtained from the 

removal effects using formula (6) [10]. 

𝑤𝑗 =
𝑅𝐸𝑗

∑ 𝑅𝐸𝑘
𝑚
𝑘=1

     (6) 

 

4. System Model and Problem Definition 

4.1. Problem definition 

Given a set D of DMs connected using a unidirectional 

ring network with |D| = n. One of the DMs has to take the 

role of the GDSS facilitator [4], while another one is 

reserved as a backup. The latter replaces the failed 

facilitator when he loses his connection with the network. 

The election algorithm has to consider multiple election 

criteria, and a formal weighting method is needed to 

distinguish the importance of each criterion. Additionally, 

the system has to be fault-tolerant and must be capable of 

handling the potential recovery of failed nodes. Finally, 

the election algorithm must satisfy the 3 correctness 

conditions (uniqueness, termination, and agreement) [21]. 

 

4.2.  System model  

The network is a synchronous, static, unidirectional 

ring composed of n nodes. Each node represents a DM. 

There has to be at least 2 decision-makers in the network 

(n>=2) [4]. Message passing is used for communication. 

The message delay between two nodes is based on the 

distance between the two DMs. If a DM loses his 

connection with the network, then its node is considered a 

failed node. 

 

4.3.  Assumptions 

To simplify the implementation and analysis of the 

proposed algorithm, a set of assumptions was considered. 

First, each node has a unique identifier (0 < UID <= n) 

[21], which also indicates the order of joining the 

decision-making session (First DM to join the session has 

the smallest UID). Moreover, nodes are homogeneous and 

not mobile. Furthermore, the maximum number of nodes 

n is fixed before starting the election. Additionally, each 

node knows the UID of the previous and next adjacent 

nodes [16]. Another assumption is that each node receives 

a heartbeat from the previous node and sends a periodic 

heartbeat message to the next adjacent node to detect if 

the previous node fails [16]. In addition, the 

communication direction is clockwise. On top of that, the 

DM’s performance is still used in calculating the election 

criteria weights even if the DM loses his connection, 

because this gives more input data to the objective 

weighting method. Furthermore, there are no hops 

between each pair of adjacent nodes. Moreover, no new 

DMs are added to the network other than the preselected 

n DMs. Finally, the ring topology is only used for the 

election and failure tolerance, it is not used for the actual 

group meeting communication. 

 

4.4.  Notations 

There are 7 types of messages in this algorithm. The 

description of each type is presented below: 

• Message(uid, value[j]): General message object 

containing the UID of the message creator and his 

value of the jth criterion. 

• InitiationMsg(uid, value[1]): Initiation message 

created by the initiator, which includes the UID of the 

initiator node. In addition to its value of the most 

important criterion (1st criterion). 

• LeaderMsg(leader_uid, backup_uid): Message 

announcing the new elected leader and the backup 

leader to all other nodes. 

• FailureMsg(uid): Message announcing the failure of 

a node by sending its UID. 

• LeaderFailureMsg(new_leader_uid): Message 

announcing the leader failure, and informing other 

nodes that the backup has become the new leader. 

• RecoveryMsg(uid): Message announcing the 

recovery of a previously failed DM by sending his 

UID. 

• LeaderRecoveryMsg(failed_leader_uid): Message 

announcing the recovery of the previously failed 

leader, thus updating the nodes with his new state, and 

informing them that the leader has become a backup. 

• TieMessage(ties[k], uid, valuea[m]): Message 

containing the UIDs of the tied DMs holding the 

maximum score, the UID of the message creator, and 

their values of the j-th criterion. 

Variables used within GFEA are detailed below: 

• state[n]: List containing the combination of role 

(DM, Initiator, Leader) and state (Failed or 
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Connected) of each node in the network. Each node 

has its local state list, which gets updated when 

receiving messages. This allows each node to be 

aware of the current state of every other node in the 

same network. 

• value[m]: List containing the evaluation of a DM in 

each election criterion. 

• criterion_type[m]: List containing the type of each 

criterion, either a beneficial (maximization) criterion 

or non-beneficial (minimization) criterion. 

• r: Received message. 

• score[n]: List containing the algorithm score for each 

DM. 

• best_dms: List of DMs with the maximum score. 

• ranking[n]: List containing the ranking of DMs 

based on the final score. 

Procedures integrated within the proposed algorithm 

are as follows: 

• send(Message msg): Procedure for passing a 

message to the next adjacent node. 

• broadcast(Message msg): Procedure implying that 

each node should keep forwarding the contained 

message to the next node until it reaches its original 

node. 

 

5. Proposed Election Algorithm 

In this work, a new election algorithm called GFEA 

(GDSS Facilitator Election Algorithm) is proposed. This 

algorithm is inspired by the FRLLE election algorithm 

[21] and MCDM (multi-criteria decision-making) 

methods. This algorithm is optimized for the problematic 

of electing a GDSS facilitator. It uses the ring topology 

with unidirectional communication channels. The nodes 

communicate via message passing. Each DM has a unique 

identifier that indicates the order in which the DM joined 

the decision-making session. Furthermore, each node is in 

one of seven states: Initiator, DM, leader, backup, failed 

leader, failed initiator or failed DM. Flowchart Figure 2 

illustrates the proposed leader election algorithm 

concisely. 

 

 
Figure 2. Flowchart Summarizing the Proposed Election Algorithm GFEA. 
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Initiation Phase: This phase concerns the detection of 

the failed leader and the composition of the first election 

message. If a facilitator already exists and the node that is 

next to the leader doesn’t receive a heartbeat message 

from him within a period called the heartbeat timeout 

[36], it announces that the leader has failed, and the 

backup leader becomes the new leader. However, if there 

is no leader in the network, then the first DM to join the 

session (UID = 1) becomes the initiator of the facilitator 

election. The first-ever election only starts when all DMs 

have joined the session. The initiator starts by sorting the 

election criteria based on their importance in ascending 

order (From least important to most important). Next, he 

creates and sends the election initiation message 

containing his UID and its value of the 1st most important 

criterion. 

Scoring Phase: In this phase (Algorithm 1), when a 

node receives an election message, it checks its value in 

criterion j. If the received value is better than its own 

(greater in the case of maximization criteria and smaller 

in minimization criteria), and then forwards the message 

to the next node. But if the received value is worse than 

its value, it creates a new message containing its UID and 

its value of criterion j. Then it sends the message to the 

next node. Once the message reaches the initiator node, it 

sends a new message for the next most important 

criterion, j+1. The same process is repeated for all election 

criteria. If more than one DM has the best value in a 

criterion, then only the DM with the smallest UID gets the 

criterion weight added to his score. At the end of the final 

round, if multiple DMs have the maximum score, then a 

tie-break mechanism is used to return a single facilitator 

(see Algorithm 2). Afterward, the initiator node sends the 

chosen leader and the backup leader UIDs in a broadcast 

message to inform all other DMs who the current 

facilitator is and who should replace him if he fails. 

Tie Break: In case two or more DMs have the same 

final score, then the initiator uses Algorithm 2 to break the 

tie and return one DM as the facilitator. First, the initiator 

starts by sorting the criteria in descending order based on 

their weights. Starting from the most important criterion 

(biggest weight) to the least important criterion (smallest 

weight), the first DM to have a better value than all other 

tied DMs in a criterion j is declared the leader. The 

second-best value in the same criterion j is selected as the 

backup leader. If multiple DMs have the best value in a 

criterion j, then the algorithm continues to the next most 

important criterion and checks again. In the rare case of 

having a tie in all criteria, then among the DMs having the 

maximum score, the first one to have joined the session 

(smallest UID) is elected as the facilitator, and the one 

who joined after him is the backup leader (second smallest 

UID). The tie-break mechanism is detailed in Algorithm 

2. 

Handling Leader Announcement Message: When a 

DM node receives the leader announcement message, it 

updates its state list with the new leader and backup leader 

UIDs and passes the received message to the next node. 

On the other hand, if the initiator node receives this type 

of message, it changes its state to DM. Except if it's 

already a leader or a backup leader, in that case, it doesn’t 

change its state. 

Algorithm 1. Scoring Phase 

Input: pm, criteria_weights, criterion_type. 

Output: leader, backup.  

n: number of decision makers; 

m: number of criteria; 

r: received message; 

1 If(this node is the initiator node) Then 

2      If(this is the final round) Then 

3          score[r.uid] = score[r.uid] + criteria_weights[j]; 

4          best_dms = UIDs of DMs with max score; 

5          If(Only one DM has the max score)Then 

6              leader = best_dms; 

7                   ranked = sort DMs from highest score to 

smallest score; 

8              backup = ranked[2]; 

9              leader_msg = new LeaderMsg(leader,                     

              backup); 

10              broadcast(leader_msg); 

11          Else tie_break(best_dms); 

12  Else Add weight of j to the score of the             

        received UID; 

13               msg = new Message(self.uid, value[j+1]); 

14               send(msg); 

15 Else If(criterion_type[j]==”max”) Then 

16            If(r.value[j] < self.value[j]) Then 

17             msg = new Message(self.uid,                  

            self.value[j]); 

18             send(msg); 

19             Else  send(r); 

20 Else If(criterion_type[j]==”min”) Then 

21        If(r.value[j] > self.value[j]) Then 

22                 msg = new Message(self.uid,     

                self.value[j]); 

23                 send(msg); 

24              Else  send(r); 
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Algorithm 2. Tie Break Between Multiple DMs 

ties = [a, b, …, k]; // k tied nodes 

1 sortDescending(criteria, criteria_weight); 

2 j = 1; 

3 If(this is the initiator node)Then 

4     While(j <= m) Do 

5          If(initiator is one of the tied DMs)Then 

6          tie_break_msg = new TieMessage(ties,               

         self.uid, self.value[j]); 

7     Else tie_break_msg = New TieMessage(ties,  

         self.uid, Null); 

8     send(tie_break_msg); 

9 Else If(this is a DM and criterion_type[j]==”max”)  

10         If (this is a tied DM and r.value[j] < self.value[j]           

        or r.value[j] == Null) Then 

11         self.backup = r.uid; 

12         self.leader = self.uid; 

13         found = True; 

14         tie_break_msg = new TieMessage(ties,               

self.uid,   self.value[j], found); 

15         send(tie_break_msg); 

16  Else send(r); 

17 Else If(this is a DM and criterion_type[j]==”min”)  

18    If (this is a tied DM and r.value[j] > self.value[j]         

or r.value[j] == Null) Then  

19         self.backup = r.uid; 

20         self.leader = self.uid; 

21         found = True; 

22         tie_break_msg = new TieMessage(ties,      

        self.uid,  self.value[j], found); 

23         send(tie_break_msg); 

24   Else send(r); 

25 Else If(This is a DM)Then 

26         send(r); 

27 If(Initiator receives TieMessage and found == True) 

28         leader = r.leader; 

29         backup = r.backup; 

30         leader_msg = new LeaderMsg(leader,          

backup); 

31         BreakLoop; 

32 Else If(Initiator receives TieMessage and found == False) 

33         j = j + 1; // Continue to next criterion 

34 Else If(there is a tie in all criteria) Then 

35             leader, backup = best_dms[1], best_dms[2];              

//Choose 2 DMs with smallest UIDs from tied DMs 

36             broadcast(leader_msg); 

 

Fault Tolerance: In case the facilitator gets 

disconnected from the network, the node next to the failed 

leader that detected his failure sends a leader failure 

message containing the UID of the backup as the new 

leader. The backup leader is the DM with the second-best 

score. Having a backup eliminates the time and resource 

cost of running the election another time when the leader 

fails [14]. If a DM loses his connection with the network, 

then his state is changed to “Failed Node”, and his 

previous node gets connected directly to his next node in 

order to keep the ring topology intact. This network 

doesn’t support partitioning as it will always try to keep 

its logical ring topology intact. 

Additionally, if the initiator node fails in the first round 

(j = 1), then the node next to the failed initiator becomes 

the new initiator, and the election continues without 

interruption (see Algorithm 3). On the other hand, if the 

initiator fails after the first round, then the election has to 

restart, and the node next to the failed initiator becomes 

the new initiator. Because the failed initiator had the list 

containing the scores. Hence, the new initiator creates the 

election initiation message starting with the most 

important criterion and sends it to the next node. 

Algorithm 3. Initiator Failure 

1 If(Initiator node fails”) Then 

2     If(it’s the first round) Then 

3           Node next to the failed initiator becomes the new          

          initiator; 

4           Continue current election; 

5     Else Stop current election; 

6             Node next to failed initiator becomes the                   

new initiator; 

7             i_msg = New InitiationMsg(new_initiator,         

            value[1], new_initiator); 

8             send(i_msg); \\ New initiator sends the new 

initiation message. 

Failure Recovery: When a previously failed node 

joins the network, it restores its previous status (DM or 

Leader). As a result, if the backup has already replaced the 

leader and the previously failed leader gets reconnected to 

the session, then he becomes a leader again, and the 

backup becomes a backup again (see Algorithm 4). Next, 

the recovered leader sends a recovery message to the other 

nodes. Furthermore, if a DM recovers before the final 

round (criterion m) is finished, he is still considered a 

candidate. Because the criteria are sorted in ascending 

order, he can compensate for the previous rounds (less 

important criteria) by scoring in the most important 

criteria (later rounds). However, if he recovers after all the 

rounds have gone through, then he isn’t considered a 
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candidate and will be removed from the ranking, as the 

initiator is already in the leader announcement phase and 

isn’t aware of the DM recovery until the recovery message 

reaches him. 

If the failed initiator recovers during the first round, 

then it restores its state as the initiator, and the election 

continues. But if the first round has passed, then it 

becomes a DM. 

When the leader receives his recovery message, he 

discards it [21]. However, if a DM node receives a leader 

recovery message, it updates its state list with the new 

state of the recovered leader and forwards the received 

message to the next adjacent node. 

Algorithm 4. Recovery of failed nodes 

1 If(This is the recovering leader) Then 

2  backup = leader; 

3  leader = previously failed leader UID; 

4  rec_msg = new LeaderRecoveryMsg(leader, backup); 

5   broadcast(rec_msg); 

6 Else If(This is the recovering initiator and current round == 

failure round) Then 

7  Recovered initiator restores his initiator state; 

8  Current initiator becomes a DM; 

9  continue_election(); 

10 Else If(This is the recovering initiator and current round ≠ 

failure round) Then 

11  Recovered initiator becomes a DM; 

12  New initiator continues current election; 

13 Else  // This is a DM 

14  rec_msg = new RecoveryMsg(self.uid); 

15  broadcast(rec_msg); 

5.1. Election algorithm correctness 

For an election algorithm to be correct, it has to satisfy 

the three following conditions [21]. 

 Uniqueness: The DM with the highest score will be 

elected as the GDSS facilitator. However, if there are 

multiple DMs having the same max score, a tie-breaking 

mechanism is used. Starting from the most important 

criterion to the least important one, the first candidate to 

have an advantage in criterion j will be selected as the 

leader. Which means that there will always be one single 

leader in the system. 

Termination: The algorithm takes m×n + n time steps 

when there is no tie. In contrast, in the worst-case 

scenario, it takes m×n + m×k + n time steps when there is 

a tie, where k is the number of tied DMs. Consequently, 

the algorithm does terminate in a finite time. 

 Agreement: At the end of the algorithm or after the 

tie-breaking mechanism ends, an announcement message 

containing the elected leader and backup leader UIDs is 

sent to all DMs. Thus, every DM in the group is aware of 

the newly elected facilitator. 

 

6. Complexity Analysis 

In this section, the proposed algorithm GFEA is 

analyzed based on the number of time steps required and 

the total number of exchanged messages in both best and 

worst cases. 

 

6.1. Time complexity 

Time complexity is determined based on the number 

of time of steps that the election algorithm takes to 

complete. 

Best case: When the leader fails, the node next to it 

sends a failure message containing the UID of the backup, 

which goes through n-1 nodes. Thus, the proposed 

algorithm takes n-1time steps to end. As a result, the best 

time complexity for the proposed GFEA algorithm is: 

Ω(n). Where n is the number of DMs. 

Worst case: The worst time complexity is when n-2 

initiators fail after initiating all 12 rounds and before 

receiving the final round message. In addition to a tie in 

the score and all the tied DMs have the same values in all 

criteria. An additional 2m time steps are required to break 

the tie (two tied DMs). So, the total number of time steps 

is: (n-2)×((n+2)/2) + 2m + 2 = m(n²/2 + n) + 4. Thus, the 

worst time complexity is: O(m×n²). 

 

6.2. Message complexity 

Message complexity is obtained based on the number 

of sent and received messages between all the nodes 

during the election. 

Best case: The best-case scenario is when the leader 

fails and the failure message informs all n-1 nodes that the 

backup is replacing him. Therefore, in the best case, 2n 

messages are exchanged. Consequently, the message 

complexity of GFEA in the best case is Ω(n). 



Science, Engineering and Technology  Vol. 5, No. 2, Online First 

 

 

Online First 

Worst case: The worst theoretical case is when n-2 

initiators fail after initiating all 12 rounds and before 

receiving the final round message. In addition to a tie in 

the score and all the tied DMs have the same values in all 

criteria. As a result, the proposed algorithm exchanges 

2((n-2)×((n+2)/2) + 2m + 2) = m(n² + 2n) + 8 messages. 

Therefore, the message complexity of GFEA in the worst 

case is O(m×n²). An advantage of this algorithm is that 

there is only one initiator at a time. Thus, it avoids 

multiple nodes initiating the election at the same time. 

 

7. Empirical Assessment 

7.1.  Case study 

The proposed algorithm was tested on the case of 

collaborative e-maintenance process in an industrial 

setting. The collaborative e-maintenance system is a 

distributed system that connects multiple experts distant 

from each other to enable the proper coordination of their 

tasks and output a solution in the form of a list containing 

the repairing actions [37]. Similarly, the GDSS also 

connects several DMs distributed geographically to reach 

a consensus. By analogy, GDSS can be used in the 

collaborative e-maintenance process to conduct the 

decision-making process, resulting in choosing the 

corrective actions to repair a broken industrial machine. 

Furthermore, the collaborative e-maintenance requires 

choosing one of the experts as the coordinator [37], who 

has similar tasks to the GDSS facilitator. Since they are 

both responsible for preparing and coordinating the group 

meeting. 

Besides discussing role assignments with the other 

experts, the maintenance coordinator prepares and 

coordinates the work. Additionally, he ensures that the 

delays are not ignored [37]. Moreover, when there is an 

additional breakdown, he checks whether or not there is 

an idle expert or an idle group. If an expert is idle, the 

coordinator then assigns him to the group treating the new 

breakdown. Furthermore, when a group of experts needs 

resources, the coordinator checks if the resources are used 

or if there is a previous higher-priority request. If the 

resource is idle, then he grants the permission to the 

group, otherwise, he puts them in a queue. In addition, the 

coordinator has to give each expert a sequence number. 

On top of that, he can send an invitation to an idle expert 

to join a group of experts. Finally, he verifies the 

availability of the experts during the creation of a new 

group [38].  

When a breakdown happens, the technician on site 

notifies the expertise center. The center then selects 

multiple experts who are usually geographically distant 

from the site. The number of selected experts depends on 

the number of fields and the severity of the breakdown. 

 During our case study, an industrial machine stopped 

functioning correctly. Consequently, the expertise center 

invited six experts to diagnose and provide a list of repair 

actions to the technician on site. However, a coordinator 

is required to proceed with the maintenance process. Here, 

the coordinator is also going to be the facilitator of the 

GDSS. The six experts were evaluated based on the 12 

election criteria, which resulted in constructing the 

following performance matrix Table 1.  

 

7.2. Comparison of objective weighting methods 

Table 2 shows the execution time in milliseconds (ms) 

of five objective weighting methods on our performance 

matrix (Table 3) using their Python implementations. The 

authors used the “objective weighting” Python package as 

an implementation of the methods. Figure 3 illustrates the 

obtained weights from every method using a bar chart. 

Table 2. Execution time of objective weighting methods. 

Method MEREC CILOS IDOCRIW CRITIC ANGLE Entropy 

Execution 

Time (ms) 
0.97 0.96 0.97 7.01 0.96 1 

MEREC was applied to the performance matrix. As a 

result, the weights corresponding to each election 

criterion were fixed. The importance of each criterion is 

presented in Table 4 and is illustrated in Figure 3. From 

Table 4 and Figure 3 it is observed that applying MEREC 

resulted in assigning the coordination experience criterion 

greater importance than all other election criteria. 
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Figure 3. Bar chart showing election criteria weights using different objective weighting methods.

Table 3. Case study performance matrix 
 

Experience as DM Treated Breaks Distance Coordination Response Time Open Ports Vulnerabilities Severity Sum Connection Type Net Latency Download Upload 

DM 1 12 8 500 2 17 20 16 32 1 13 100 10 

DM 2 37 30 3938 19 20 15 14 10 0.8 366 25 2.5 

DM 3 44 23 4401 13 19 18 20 22 0.6 486 50 5 

DM 4 29 11 3477 5 18 9 22 31 0.3 198 20 2 

DM 5 38 10 5029 3 17 11 10 19 1 103 500 200 

DM 6 24 18 1846 9 21 13 18 28 0.8 232 20 2 

 

Table 4. Election Criteria Weights Using MEREC 

Criteria Experience as 

DM 

Treated 

Breaks 

Distance Coordination Response 

Time 

Open Ports Vulners Severity 

Sum 

Connectio

n Type 

Net Latency Download Upload 

MEREC 

Weights 

0.103 0.077 0.08 0.147 0.013 0.046 0.032 0.042 0.094 0.135 0.103 0.127 

In this case study, it was the first time that the expert 

group was formed. Meaning that the coordinator (leader) 

role hasn’t been assigned to any expert yet. Consequently, 

the DM who was the first one to join the group session is 

the initiator of the leader election. He is also given the 

smallest UID (DM 1). Here, each node represents the 

machine of a decision-maker. DM1 sorts the criteria in 

descending order based on their weights. Next, he creates 

an initiation message i_msg(1, 2) and sends it to the 

adjacent node next to him, following the clockwise 

direction, which is DM 4. The original initiation message 

contains the UID of the initiator node 1 and his 

performance on the most important criterion, which is the 

coordination experience criterion. Figure 4 illustrates how 

the election algorithm is initiated. 

When DM 4 receives the initiation message from DM 

1, he checks whether the received value of the first 

criterion is greater than or equal to his value. DM 4 value 

is greater than the received one. So, he creates a new 

message by setting the best value holder parameter to his 

own UID (4). It updates the best value for that criterion to 

5. Then, he sends the updated message msg1(4, 5) to the 

next node (DM 6). Eventually, when the message reaches 

DM 2, who has the best value in that criterion, he creates 

0

0,1

0,2

0,3

0,4

0,5 Election Criteria Weights

CILOS MEREC Entropy Weights IDOCRIW CRITIC ANGLE
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a new message in which he changes the best value of the 

1st criterion to his value 19 and changes the best value 

holder parameter to 2. After that, he sends the message 

msg1(2, 19) to the next node (DM 5). This can be observed 

from Figure 4. 

DM 1

DM 4

DM 6

DM 3

DM 2

DM 5

Initiator

Msg(3, value3[1]=13)

Value4[1]=5

Value6[1]=9

Value3[1]=13

Value2[1]=19> 13

Value5[1]=3

Value1[1]=2

InitMsg(1, value[1]=2)

Msg(4, value4[1]=5)

Msg(6, value6[1]=9)

Msg(2, value2[1]=19)

Msg(2, value2[1]=19)

 

Figure 4. Election initiation and first election round. 

When the initiator receives a message containing the 

index of the same criterion it first sent, msgj(uid, value[j]). 

It adds the criterion weight to the DM’s score whose UID 

is in the received message. This process is repeated for all 

m election criteria. Handling the second round of the 

election, which concerns the 2nd most important criterion 

(network latency), is illustrated in Figure 5. 

 

Figure 5. Second round of the election. 

When the message of the final criterion, msg12(1, 17), 

which is the least important criterion, reaches the initiator, 

it adds the criterion weight to the DM with the best value 

in that criterion. In addition, it chooses the DMs with the 

highest and second-highest scores and sends their UIDs in 

a leader announcement message, leader_msg(1, 2). These 

two UIDs represent the UIDs of the leader and backup 

leader, which are 1 and 2, respectively. This phase is 

illustrated in Figure 6. 

DM 1

DM 4

DM 6

DM 3

DM 2

DM 5

leader_msg(1, 2)

Leader

leader_msg(1, 2)

leader_msg(1, 2)leader_msg(1, 2)

leader_msg(1, 2)

leader_msg(1, 2)

Backup Leader

 

Figure 6. Leader & backup leader announcement. 

 

The final GFEA score of each DM is shown in Table 

5. The elected facilitator is DM 1, who was initially the 

initiator, and the backup leader is DM 2, who got the 

second highest score. The initiator ranked the DMs, 

including itself, based on their score. This ranking is 

presented in Table 6. 

Table 5. Algorithm score for each DM. 

DM UID 1 2 3 4 5 6 

S c o r e  0 . 3 2 2 0 . 2 6 6 0 . 1 0 3 0 . 0 4 6 0 . 2 6 2 0 

 

Table 6. Ranking of the DMs based on GFEA score. 

Rank 1 2 3 4 5 6 

DM UID DM 1 DM 2 DM 5 DM 3 DM 4 DM 6 

 

7.3. Leader failure scenario 

This subsection illustrates an example scenario in 

which the leader DM 1 loses his connection to the 

network. In this case, the next adjacent node, DM 4, 

doesn’t receive a heartbeat message from the leader for a 

period exceeding the threshold. Consequently, DM 4 

considers that the leader has failed. Next, DM 4 sends a 

leader failure message leader_failure_msg(2) containing 

the UID of the new leader DM 2 (backup) who replaces 

the facilitator automatically without executing the 

election algorithm again (see Figure 7).  
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Figure 7. The leader disconnects from the network. 

 

When DM4 receives the leader failure message, it 

discards it. Finally, each node keeps sending a periodic 

heartbeat to its next node (see Figure 8). 

DM 4

DM 6

DM 3

DM 2 DM4 Heartbeat

DM 6 Heartbeat
DM 3 Heartbeat

New Leader

DM 5 HeartbeatDM 5Leader Heartbeat

 

Figure 8. Backup replaces the failed leader. 

 

7.4. Results & discussions 

Figure 9 and Figure 10 show the normalized values of 

the elected leader and backup leader. These values were 

normalized using the best values available on the 

performance matrix. 

From Figure 9 and Table 1, it is seen that the elected 

leader (DM 1) is the closest DM to the breakdown site. 

This can come in handy if an expert physical presence is 

required on-site or if he loses his connection to the GDSS. 

Plus, it reduces the cost of time and travel fees for the 

expert to arrive at the site. Similar to DM 5, he also has 

the best response time. Additionally, DM 1 has the least 

network lag (13 ms), which allows him to work with other 

DMs almost in real time. This is mainly because of two 

factors: he has the best type of internet connection (fiber 

optic), and he has the shortest distance to the breakdown 

site [39]. However, DM 1 doesn’t perform well in the 

security category compared to other DMs. This means that 

his machine makes the GDSS vulnerable to confidential 

information leaks and malicious modifications. 

Based on Figure 10 and Table 1, the backup leader 

(DM 2) has the most coordination experience, ensuring a 

well-planned meeting, better handling of conflicts, and 

highlighting each DM’s opinion using the right questions. 

Furthermore, DM 2 has participated the most in treating 

industrial breakdowns and has been an industrial expert 

longer than DM 1, giving him an edge when it comes to 

technical questions, fetching required information from 

the database, and breakdown diagnosis.  

 

Figure 9 Radar chart showing normalized dataset values of 

Expert 1. 

 

Figure 10. Radar chart of normalized dataset values of Expert 

2. 

DM 1

DM 4

DM 6

DM 3

DM 2

DM 5

X X

Failed Leader

Backup Leader
Leader_failure_msg(2)
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Additionally, in the security category, DM 2 performs 

better than DM 1. Since his machine has fewer 

vulnerabilities with less severity and fewer open ports. 

This means that his machine makes the GDSS less 

vulnerable to malicious attacks. However, both his 

download and upload speeds are considerably slower 

when compared to other experts like DM 5. This can be 

time-consuming when uploading or downloading files. 

On top of this, his network delay is slightly high, resulting 

in a lag during real-time audio and video communications 

with the technician and with other DMs. Moreover, DM 2 

has an average response time when asked to join a 

decision-making session. 

 

7.5. Comparison with other election algorithms 

Table 7 compares GFEA with other classic ring 

election algorithms using our performance matrix based 

on execution time, number of exchanged messages, and 

maximum resident memory. These algorithms were tested 

using MPI4Py on a local machine composed of a 64-bit 

Intel 6600HQ processor and 16 GB of RAM. 

Table 7. Performance comparison. 

Election 

Algorithm 

Execution 

Time (ms) 

Number of 

Exchanged 

Messages 

Max Resident 

Memory 

(MB) 

GFEA 131 154 35 

Ring 172 24 34.56 

LCR 147 34 34.79 

Bully 21 96 18.38 

Table 8 compares the proposed GFEA algorithm with 

modern election algorithms that exist in the literature. The 

comparison is based on the functionality it satisfies, the 

time complexity of the worst case in Big O(n) notation, 

the message complexity in the worst case, the UID of the 

elected leader, and the UID of the backup. 

From Table 7 we can see that GFEA is faster than Ring 

and LCR, however, it is slower than Bully. GFEA also 

consumes more memory and exchanges more messages 

than other algorithms. This is mainly because GFEA goes 

through 12 rounds as it considers multiple election criteria 

rather than just basing the election on the UID, like the 

Ring, LCR, and Bully. The compared algorithms apply to 

human elections. However, they are not optimized for 

humans. Because the criteria considered in these 

algorithms are not human-related. This would result in 

choosing a facilitator solely based on their machine’s 

performance while ignoring experience and security 

criteria, which is not suitable for the facilitator role. The 

privacy-preserving election algorithm [11] uses votes to 

determine a leader. This is a common approach used in 

human elections. However, it’s still very limited and 

subjective. 

The GFEA algorithm showcases the strengths and 

weaknesses of each DM. Because contrary to algorithms 

like FRLLE and Resource-based [3], [21] it doesn’t 

combine all criteria into one single value before the 

election, but rather builds the score progressively during 

the election. This is because the score can’t be calculated 

solely based on the individual list, instead, the best value 

across all nodes is needed to determine the best node in 

each criterion, and then its weight is added to the score. 

This represents an advantage to GFEA, as it uses a global 

view instead of a local one.  

 

Table 8. Comparison of the proposed election algorithm with existing algorithms.

 

Algorithm 

Satisfied 

Functionality 

Worst Time 

Complexity 

Worst Message 

Complexity 
Elected Leader Backup Leader 

GFEA All O(mn²) O(mn²) DM1 DM2 

Ring [24] None O(n²) O(n) DM6 No 

LCR [25] None O(n²) O(n) DM6 No 

Bully [27] None O(1) O(n²) DM6 No 

FRLLE [21] Recovery O(n) O(n²) DM1 No 

Top-K [16] Backup Not Specified Not Specified DM6 DM3 

SEALEA [14] Backup Not Specified Not Specified DM6 DM3 

DRLEF [17] Backup Not Specified Not Specified DM3 DM5 

Privacy-Preserved 

[11] 
Tie-break Not specified O(d(G).n.p) DM4 No 

Multi-attribute [23] Multi-criteria O(n.D) O(n.l) DM2 No 
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Additionally, no fictitious reference values are used for 

defining what’s the best value in each criterion. As a 

replacement, the actual best values present within the 

performance matrix are used as a reference. Another plus 

that puts GFEA in a more favorable position is that, 

instead of using random weights or weights fixed by 

human judgment, like in FRLLE and Resource-based [3], 

[21], it uses MEREC [10] which is a formal objective 

weighting method. The weights affect the final score of 

nodes; thus, they can alter the elected leader and backup 

leader. Furthermore, in contrast to the existing election 

algorithms, the proposed algorithm considers the failure 

and recovery of the initiator node. This aspect is neglected 

in most of the related works. Moreover, the tie-break 

mechanism integrated within GFEA considers the 

election criteria instead of just relying on the UID. Plus, it 

gives priority to the most important criteria. This ensures 

that the proposed algorithm always elects the most 

suitable node for the leader position by satisfying the 

election criteria. 

If LeLann, LCR, Bully, or HS algorithms [24], [25], 

[26], [27] were applied to our case study, then DM 6 

would have been elected as the leader. Despite DM 6 not 

having the best value in any criterion and having the worst 

score (zero score), he would still be elected in UID-based 

algorithms, because he has the biggest UID. Additionally, 

if the smallest UID was considered as the election 

criterion, then DM 1, who is the most suitable expert for 

the role, would win the election. However, this approach 

is not reliable, as the UID in our case indicates the joining 

order. Meaning that if DM 6 was the first to join the 

session, then he would be elected as the leader despite him 

being the worst fit for the leader role. Consequently, the 

UID alone cannot be the determining factor for the 

suitability of a DM for the leader role. Additionally, in 

GFEA, only one node can detect the leader failure, and 

only one node can initiate the election at a time. This is a 

considerable advantage when knowing that in classical 

ring election algorithms, multiple nodes can detect the 

leader's failure and initiate multiple elections at the same 

time [25]. 

 

8. Conclusion & Future Directions 

This work introduces a new distributed leader election 

algorithm designed specifically for electing a human 

GDSS facilitator. The system considered is a fault-

tolerant unidirectional ring synchronous system, in which 

each node represents a DM, and they communicate via 

message passing. The proposed algorithm integrates 

multiple election criteria falling into security, experience, 

and network performance categories. These criteria are 

weighted using the MEREC method. Furthermore, GFEA 

reserves a backup leader to replace the facilitator in case 

the connection fails between the facilitator and the GDSS. 

This saves time and avoids halting the group decision-

making session. Additionally, this algorithm doesn’t use 

the UID to break a possible tie. Instead, it uses a new tie-

breaking mechanism that searches for the DM who has an 

advantage in the most important election criteria. 

Moreover, the failure and recovery of both the initiator 

and the leader are handled efficiently. No existing election 

algorithm has integrated all these features. Finally, GFEA 

is flexible and can be applied to the classical leader 

election problem in distributed systems by changing the 

election criteria to machine-related criteria, such as CPU 

and memory load. 

The proposed Algorithm has certain limitations. Its 

robustness compromises performance and adds network 

overhead. GFEA is much slower and uses many more 

messages when compared to other classical ring 

algorithms, such as Ring and LCR. Mainly because of 

considering multiple election criteria and taking into 

account the failure of the initiator. However, the 

performance can be improved by optimizing the 

algorithm and reducing its time and message complexity. 

This paper identifies several areas for future 

development of the GFEA algorithm. First, the algorithm 

should be tested in large-scale networks to see the impact 

of increasing the number of nodes. Secondly, a 

comparison should be conducted between distributed 

election algorithms and the multi-criteria approach for 

selecting a GDSS facilitator. To further validate and refine 

the GFEA algorithm, real-world expert feedback is 

crucial. Additionally, the algorithm's adaptability to 

different network topologies warrants investigation. 

Finally, other objective methods should be tested with 

GFEA to see how changing the weights affects the final 

ranking of the DMs. 
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