
Science, Engineering and Technology Vol. 2, No. 1, pp. 7-15
www.setjournal.com https://doi.org/10.54327/set2022/v2.i1.24

7

1

Assessment of Factors Affecting the Software Process Improvement in
Small Organizations

Bakir Karahodža, Elma Avdagić-Golub, Alem Čolaković

University of Sarajevo, Faculty of Traffic and Communications, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina

Abstract

Software process improvement implies a set of complex and systematic activities of software engineering. It
requires theory and models established in management, technical and social sciences. The improvement is based on
the assumption that the organization if it owns mature and capable processes, would be able to deliver quality software
on time and in line with predicted costs. The maturity models are initially aimed for implementation in enterprise
software organizations, government organizations and within the military industry. Their complexity and the size
make them difficult to use in small software organizations and companies. In such organizations the interest for use
and the efforts to make an efficient and effective organization is always presented, though. In this paper, the basic
and derived capability maturity models are described and cases from their implementation are analyzed, along with
assessment of results of such projects in business practices. The problem of the software process improvement in
small organizations is described, extracting the risks and recommendations for its enhancement. These
recommendations are provided in order to set up a foundation for implementation of these models in a specific
managerial and organizational environment characterized by small organizations.

Keywords: software engineering, software quality, software process improvement, CMM models, small
organizations, change management

1 Introduction

Software process consists of a complex set of activities
that should result in the delivery of a quality software
product or service. In addition to the quality, the software
project must be completed within the established
deadlines and within the planned budget. People,
procedures, and many different components must be well
coordinated to achieve such goals. The management
practices identify software processes as manageable and
subject to improvement. There is a continuous
development path of models for software process
improvement. IBM began with development of such
models to improve software quality in the early 1980s.
Along with the IBM team, Humphrey [1] developed an
original concept that later served as the basis for many
feature models, standards, and methodologies. Humphrey
found that the quality of software is directly related to the
quality of processes used in its development. To improve
the software development process, Humphrey attempted
to implement the continuous improvement cycle Plan-Do-
Check-Act (PDCA) by Deming [2]. After the
implementation of such a new concept, the quality of the
software was not significantly improved, though. It has

Corresponding author: Bakir Karahodža (bakir.karahodza@fsk.unsa.ba)
Received: 2 February 2022; Revised: 17 March 2022; Accepted: 26 March 2022; Published: 30 April 2022
© 2022 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License.

been found that improved software development practices
do not survive until organizational behavior changes in a
way that is supported and maintained. The conclusion was
that organizations must remove obstacles to continuous
improvement in a unique and specific order if they are to
succeed.

In the late 1980s, the Software Engineering Institute
(SEI) at Carnegie Mellon University, also began work on
developing directives to establish and improve a high-
performance software organization. The research was
funded by the US Department of Defense (DoD), wanting
to ensure the success of the project through the maturity
assessment of their subcontractors. The project continued
on developing a maturity framework originally started by
IBM and Humphrey. The renewed and expanded model
was named The Capability Maturity Model for Software
(SW-CMM) and retained the original idea of a multilevel
model. The SEI recognized the chance to promote a novel
framework outside the military sector of American
industry, which succeeded in accepting new ideas [3].

Despite the wide interest in the application of CMM
based framework for improving software processes, it was
found that small businesses, small organizations, and

Science, Engineering and Technology Vol. 2, No. 1, pp. 7-15

8

small projects encounter certain difficulties in its
implementation [4]. CMM models mostly relate to
software practice in large projects and software
organizations. In addition, many of these practices are
unsuitable for small projects, which are prevalent not only
in small businesses and small software organizations but
also in large businesses. Small projects within such
organizations often act as small organizations, i.e.
independent cost centers. Although the authors of CMM
have repeatedly emphasized CMM was created for any
project and any organization, there is a general conclusion
that CMM cannot be applied in an integral form in small
and medium organizations [5].

Software process improvement (SPI) is defined as a
complex, systematic, and highly professional activity of
software engineering that requires theory and models,
skilled technical staff and managers, and motivated and
ready top management [1]. From the very definition, one
can recognize some of the principles, but also the
preconditions for SPI. Given that the software process is
by definition a complex set of activities and operations, it
can be concluded that any attempt to improve these
processes is at least as demanding. The challenge thus
becomes multiplied: perform SPI in a small software
organization and try to identify a large set of constraints
and then overcome them.

The rest of the paper is organized as follows: Section
“Capability maturity models” summarizes and discusses
several capability maturity models, such as CMM and
CMMI. In “IDEAL process improvement life cycle” we
detail one of the most often used approaches to continuous
improvement and describe its steps. In “Software process
improvement in small organizations” we present and
discuss SPI in small organizations, and describe the
common factors constraining or enabling the process
improvement, along with proposed prerequisites with
success. We conclude the article in “Conclusion”.

2 Capability Maturity Models

In the last several decades, from the first edition of
CMM for Software ver.1.0 to the present, CMM-based
frameworks have traversed a complex path from a
specialized model for evaluating bidders for the U.S.
military industry, up to a framework with a broad set of
guidelines for software process improvement. Each CMM
model is designed as a so-called maturity model. The
maturity model is defined as a structured set of elements
that describe the characteristics of effective processes [6].
The idea of the SEI was to provide a place where an
organization could start, i.e. from where it can be
launched in activities to improve software processes.
They took long lasting knowledge and experience in SPI
along with already adopted terminology and common
vision within the academic and business community.

According to the SEI, CMM is defined as “a reference
model of process maturity in a specified discipline, used
to improve and assess a group’s ability to perform those
disciplines” [7]. Also, CMM models are described as "a
set of public criteria that describe the characteristics of an
organization that has successfully implemented process
improvements" [8].

CMM models differ from each other in:

● Disciplines: software engineering, systems
engineering, etc.

● Definitions of maturity, i.e. ways to improve the
process, and

● Structures: phase or continuous.

Inspired by the success of CMM-based software
improvements, various organizations have sought to
apply this concept to other critical engineering disciplines.
As they were the most competent with their basic
knowledge of maturity models, SEI initiated the
coordination of international efforts to develop the
Systems Engineering Capability Maturity Model (SE-
CMM) and the Integrated Product Development
Capability Maturity Model (IPD-CMM).

In addition to these models, People CMM and
Software Acquisition CMM have been developed, which
are similar to CMM for software with their architecture,
basic principles, and support practices. Several other
projects were later launched in an attempt to create an
international standard for process management. The
project started in 1991 and was named SPICE (Software
Process Improvement and Capability Determination), and
since 1993 it has been covered by ISO / IEC 15504 [9]
covered by the ISO and the International Electrotechnical
Commission (IEC).

The rest of the chapter describes the SEI models in
more detail, especially CMM for Software, which was
first developed, following with the CMM Integration.

2.1 Software CMM

The Software CMM (SW-CMM) is a first developed
maturity model, and very quickly achieved broad success.
It later became a foundation for all other maturity models.
In 1987, the SEI (Software Engineering Institute) was
commissioned by the US Department of Defense to
develop a method for determining the capabilities of
software contractors who bid for the Air Force. As a result
of these activities, a questionnaire (now known as the
Maturity Questionnaire - MD) and a bidder's evaluation
method (The Software Capability Evaluation - SCE) were
first developed.

CMM is based on five levels of process maturity,
ranging from level one (1) to level five (5). The level one

Science, Engineering and Technology Vol. 2, No. 1, pp. 7-15

9

is the initial level of maturity - the lowest degree and each
subsequent level of maturity consist of key process areas
(KPA), such as e.g. Requirements Management (RM) or
Software Project Planning (SPP). These areas are
organized by certain characteristics. Each KPA has
specific goals that must be met and all KPAs at some level
must be met to demonstrate that the level of maturity in
the organization has been achieved. Achieving the KPA
at one level allows the organization to initiate
improvement activities at the next, higher level.

In this way, SW-CMM reached the desired outcome:
customers are able to identify the advantages,
disadvantages, and potential risks of working with their
software vendors - each level indicates the state of
maturity of the entire software organization. The SW-
CMM is written in a hierarchical form containing an
abstraction of axioms and universal knowledge applicable
to software engineering and project management with
detailed instructions and examples (Figure 1).

The five levels and key process areas that describe
them are as follows:

1. Level – Initial describes software processes as ad-
hoc, and often chaotic. Only a few processes have
been defined, and success practically depends on
individual efforts and so-called heroes within the
organization. It takes tremendous effort from
management and employees to overcome difficulties
in software development that is constantly
unpredictable. Plans, budget, functionality and
product quality change depending on the motivation
of individuals, and their skills and knowledge.

2. Level – Repeatable establishes the basic
management processes for software development
projects: monitoring costs, monitoring product plans
and functionality. The necessary process discipline is
established to replicate previous successes on projects
with similar applications, although project-specific
processes may differ. The basic elements of
management control are built-in and the development
itself can be described as disciplined because the
monitoring and planning of the process are more
stable.

3. Level – Defined documents, standardizes and
integrates software processes for both management
and engineering processes into standard software
processes within the organization. All projects use
proven and customized versions of the standard
processes within the organization. An education

program is implemented throughout the organization
so that managers and other employees acquire the
necessary knowledge and skills in projects.
Development processes are defined as standardized
and consistent, and software engineering and
managerial jobs are stable and repeatable.

4. Level – Quantitatively Manageable collects detailed
procedures for software processes and product
quality. Productivity and quality are measured in each
of the major software process activities and in all
projects. These measurements are defined and
consistent. The causes and consequences of the whole
development process are already very well-known
and there are no unpredictable situations. Corrective
actions are used in case of approaching the set product
quality limits.

5. Level – Optimizing continuously improves processes
by enabling quantitative feedback from processes,
innovative ideas, and technologies. The data on the
effectiveness of software processes are used to
conduct a cost-benefit analysis of new technologies
and proposed changes in the software production
process. Continuous improvements are being sought
to expand capabilities and areas of application.

The Key Process Areas (KPA) in the CMM are met by
achieving the objectives described in the key procedures
and examples. There are also informative components that
provide guidance on model interpretation. There are 52
objectives and 316 key practices for 18 key process areas.
Practices and examples describe what good engineering
and management practices are, but they are not exclusive
in how to implement processes. Under the term “general
characteristics”, the CMM identifies institutional
activities that stabilize all key process areas. Concepts
such as measurement, training, documented procedures,
executive policies, top management support, appropriate
tools, verification of practices, and continuous process
improvement are gradually included within levels.
Examples of KPAs are as follows (Level 2):

● Requirements Management - RM

● Software Project Planning - SPP

● Software Project Tracking & Oversight - SPTO

● Software Subcontract Management - SSM

● Software Quality Assurance - SQA

● Software Configuration Management - SCM.

Science, Engineering and Technology Vol. 2, No. 1, pp. 7-15

10

Figure 1. Hierarchical structure of the SW-CMM model

2.2 Software CMM Integration

SW-CMM has achieved acquisition and expansion in
the commercial IT sector, certain criticisms, redesigns,
releases of legacy models, as well as innovative versions
issued by the SEI itself. Models for other disciplines such
as systems engineering, integrated product development,
and others have been developed. Although many
organizations found these models useful, they also faced
problems caused by inconsistencies when integrating with
other models, such as the ISO family of standards and
other process improvement programs. For that reason, in
2000 the initiative to integrate various CMM frameworks
into a single set of integrated models was announced. The
result of this initiative is the creation of CMM Integration
(CMMI). This model has undergone several editions and
has further popularized this approach to software process
improvement [10]. CMMI terminology is very similar to
the original version of CMM. For example, Key Practices
are now defined as Specific Practices. Seven new Process
Areas have been added, four of which relate to Integrated
Product and Process Development (IPPD) and Supplier
Sourcing (SS). There are now 25 Process Areas (PAs),
unlike the CMM which had 18 Key Process Areas
(KPAs).

The major change is in the way it is implemented and
applied. CMMI can be applied through continuous or

phased presentation. Continuous presentation allows the
organization to choose the sequence of improvements that
best suit their business goals and mitigate potential risks.
The phased presentation provides a previously proven
sequence of improvement, starting with basic managerial
practices and advancing through successive levels, where
each serves as a foundation for transition to the next level.

In a continuous presentation, a given process area is
defined by its Capability level and each Process area can
exist in any of the six capability levels, independent of
other process areas (Figure 2). Here, the term "level of
maturity" refers to a predefined group of process areas
that exist at the same level of maturity, while the term
"level of capability" refers to only one process area.

Figure 2. CMMI continuous presentation of capability levels

Science, Engineering and Technology Vol. 2, No. 1, pp. 7-15

11

Figure 3. IDEAL process improvement life cycle

3 IDEAL Process Improvement Life Cycle

During the implementation of CMM models in various
organizations, the need for specific guidelines for the
implementation of the model is recognized. The reason for
creating a specific approach is obvious. The attempt to
improve is so complex and its effect is so far-reaching that
it requires a specialized and systematic approach to
manage a kind of improvement lifecycle. In order to fulfill
such requirements, SEI has developed the IDEAL model.
It’s aimed to complete the lifecycle of software process
improvement based on the CMM framework in an
organization.

IDEL provides an approach to continuous
improvement by highlighting the steps needed to establish
an improvement program. Following IDEAL’s phases,
activities, and principles, the model provides a form of a
disciplined engineering approach to improvement. The
focus is set on the management of improvement programs,
as well as establishment of a long-term improvement
strategy. The model consists of five phases:

1. Initiating–Laying the groundwork for the
improvement.

2. Diagnosing – Determining where the organization is
and where it wants to be.

3. Establishing– Planning a specific way to achieve the
desired state.

4. Acting– Execution according to plan.

5. Learning– Learning from experience and improving
readiness to adopt new technologies in the future.

Each of these five phases consists of several activities
that complement each phase. The similarity of the phases
of the IDEAL cycle with the Deming Plan - Do - Check -
Act cycle is obvious (Figure 3 [11]):

 Initiating Phase. The critical groundwork of the
improvement program is being laid. The business reasons
for taking the program are being refined and clearly
presented. The contributions of the improvement program
according to the business goals are identified, as well as
the relations with other tasks in the organization.
Management support is provided and the necessary
resources are allocated. The necessary infrastructure for
implementation management is finally being launched.
Activities at this stage are critical. If done well and
completed, the activities that follow can continue with
minimal deviations. If they are poorly or incompletely
done, then time, effort, and resources will be wasted in the
following stages.

 Diagnosing Phase. The diagnostic phase
develops a more complete understanding of the
improvement work. During this phase a more complete
understanding of the work to improve the development, as
well as two characteristics of the organization: the current
state of the organization and the desired future state. This
is the phase for which the SEI has developed methods to
measure the current organizational level. It was originally
a set of CBA-IPI (CMM Based Appraisal for Internal
Process Improvement) methods. Since 2002 the SCAMPI
(Standard CMMI Appraisal Method for Process
Improvement) set of methods has been used. The defined
organizational state is used to develop an approach for
business practices improvement.

Science, Engineering and Technology Vol. 2, No. 1, pp. 7-15

12

 Establishing Phase. The purpose of this phase is
to develop a detailed work plan. Priorities are set as a
reflection on the recommendations created during the
diagnostic phase, as well as organizational operations and
requirements for the operating environment. A priority-
based approach is developed, whilst actions, checkpoints,
desired outcomes and responsibilities are finally specified
in the action plan.

 Acting Phase. Activities in this phase help the
organization to implement the work that was
conceptualized and planned in the previous three phases.
These activities usually require more time and more
resources than all the other phases combined.

 Learning Phase. This phase completes the
improvement cycle. One of the goals of the IDEAL model
is continuous improvement and readiness to implement
changes. In the Learning phase, the overall experience
from the IDEAL model is reviewed to determine what has
been met, whether the attempt has met the objectives, and
how the organization can implement change in a more
effective/efficient way in the future.

4 Software Process Improvement in Small
Organizations

Related studies highlight many of the factors that
affect SPI projects in small organizations. In our
approach, we gather and analyze the most important
factors for their successful implementation. Based on the
selected factors, we categorize each within one of three
major categories. Later, we extract and compare
prerequisites for success aligned with the structural
organization of KPA found in CMM/CMMI framework.

The original focus of the CMM was on enterprise
organizations and contracting large projects with the
government. However, there are a huge number of
companies that are not able to successfully start and
complete activities to improve the software process, due
to their internal structure, and especially the number of
employees. These companies also have an interest in
obtaining an assessment of the maturity of their processes
in such a way as to enable them to participate in projects
seeking such companies as a condition of bidding for the
contract.

One of the first challenges for small organizations is
that their primary business goal is survival. Even after
realizing that the status quo is unsatisfactory and that SPI
will help the organization, and after finding resources and
allocating individual responsibility for change, using
CMM remains a difficult business decision. According to
Paulk [4], small organizations tend to believe “We are all
competent .. We all communicate with one another. We
are all heroes”. This is how the author describes a very
common situation within small organizations trying to

explain their internal software process during the
appraisal.

The term “small and medium organizations” is often
the subject of discussion. The SEI describes small projects
as “3-4 months’ duration with 5 or fewer people”. Other
authors [12] define a small organization with less than 50
software designers and developers and small projects with
less than 20 employees. Somewhat different, certain
European authors favoring the SPICE program define
small companies with less than 15 people, and medium
between 15 and 50 people [13].

The key point is that the small organizations, same as
large, have issues with undocumented requirements,
resource allocation, training, and product documentation.
Regardless of these challenges, they tend to act in an agile
and efficient way [14]. Usually, small teams are more
productive than large ones - they get closer faster and have
fewer communication problems [15]. Some tend to use
minimal processes and rely on human skills, while others
insist on rigorous use of procedures, planned processes,
and methodological steps, techniques, and tools. The
dilemma remains open - how much process discipline is
needed and what is its role in small organizations and
small teams.

4.1 Common factors constraining or enabling
the process improvement

Since the first appearance of failures and open
questions in the implementation of SPI projects in small
organizations, the large number of papers that have
researched this topic emerged. We find that even in the
period of intensive spread of CMM models in the
industrial environment, some of the open issues were
defined, along with the key factors for success. In the
early CMM work, Humphrey [1], [16] defined differences
in expectations of results from the SPI project in a
characteristic environment such as small companies.
Later, Abbot [17] identified six keys to SPI, and Jonhson
and Brodman [18] identified seven challenges in small
organizations. Subsequent papers present similar
approaches that further describe and categorize success
factors in a variety of ways, such as Wongsai [14],
Conradia and Fuggetta [19], Kautz [20], Rifkin [21],
Allison [22], Taupe [23], Kuhrmann [24], Duba [25], and
Alfaro [26]. It is noticeable that a certain number of papers
connect success factors with the principles of the general
theory of change management.

Based on these researches, some of the general
principles and rules for SPI projects are identified and
presented. In Table 1., the mapping between extracted
factors and prerequisites for success needed to adopt and
exploit each factor as enabling is presented. The factors
are categorized in one of three categories: Business,
Process and People.

Science, Engineering and Technology Vol. 2, No. 1, pp. 7-15

13

Table 1. SPI success factors

Category Factor Description

Business
Gains from improvement are
cumulative

Although they produce significant technical and organizational costs, SPI gains
accumulate over time if the organization continues to maintain SPI in a
systematic and consistent manner.

Business Cost benefit analysis
Aim for an internal cost benefit model including depreciation of expenses.
Perform one experimental SPI attempt in the short term and then inform
management that a usable result may require more time than expected.

Business
Focus on development goals
and innovations

SPI initiative should be primarily focused and consistent with business goals
and strategies in order to ensure a positive effect on the organization's
performance that leads to improved software products.

Process
Empirical models and
approaches are hypothesis

Although different approaches and concepts of improvement are presented,
each should be treated as a hypothesis due to imperfect evidence.

Process
Improvement is always
performed in a different
environment

There is no specific and universal model that can be completely copied, nor is
there a specific methodology that can always be followed - organizational
uniqueness.

Process Measurable goals
The goal measurement is used in two ways: monitoring the quality of the
software product along with customer satisfactions, and external monitoring
and certification.

Process Learning

SPI is about learning, not control. The SPI team should work independently of
the quality assurance team. Use information about how people really work, not
how they describe it. A reward system for reporting problems or suggesting
ideas for improvements should be established.

Process
Implementation of automated
software support

Automated support for software processes is usually overemphasized. Only
stable processes, e.g. inspection, testing, configuration management are suitable
for automated support.

Process
Internal resources and
resistant to change

The ratio of used resources and resistance to change is inversely proportional.
With reduction in organizational size, resistance becomes more of an issue.

People
Domination of the
sociological component

Software development and software processes take place in an environment that
has the characteristics of technical and sociological systems. However, SPI is
run exclusively by humans and technological features of the system are
negligible here.

People Motivation for change
Designers and developers are motivated for change; if possible, start with
bottom-up concrete initiatives, and continuously increase their participation
through situational learning.

Process
Process improvement
champion

Process improvement champion who has experiences that they can draw on to
deliver the improvement should be selected. Their political strength within all
stakeholders is important.

Underlying the various frameworks and approaches to
SPI are, in fact, similar factors that have been taken into
consideration. In addition to these principles, the
emphasis is on providing preconditions for successful
programs.

4.2 Prerequisites for success

Using any CMM framework alone will not raise an
organization's level of process maturity enough. Although
each approach provides different empirical models, they
all in fact share the same fundamental assumptions for
success. Only when these conditions are met, various
types of SPI project risks can be significantly reduced.

The partial answer in enabling prerequisites for
success can also be found in structural organization of
KPA in CMM/CMMI framework. They are organized

according to certain characteristics: Commitment to
action, Ability to change, Executive activities,
Measurement and analysis, and Verification of
implementation. Here, we emphasize the Ability to
change, which should provide an answer to the following
question: What prerequisites must exist within a project
or organization to implement software processes? It
contains practices related to resources, training,
orientation, organizational structure, and utilities.

It is necessary to create such an environment that will
adapt and provide the preconditions for success,
regardless of the individual method used. As previously
pointed out, these methods must be treated as hypotheses.
The preconditions are general, familiar, and simple, but if
considered carefully, it is clear that they are not always
easy to provide.

Science, Engineering and Technology Vol. 2, No. 1, pp. 7-15

14

If an organization agrees that these prerequisites for
success must be met before any improvement program is
launched, then there are important implications for the SPI
program. Primarily, the program or project manager is
partially relieved of responsibility for the success or
failure of the program. Although the first prerequisite is
leadership, the adoption of these principles has overcome
this definition and the focus is evenly distributed on other
prerequisites:

1. Leadership. The starting point for any successful
project is leadership, focused on clearly defined goals
and objectives. Unfortunately, this is hard to find in
most small organizations and what is lacking even in
large organizations. Leaders must be ready to remove
all ambiguities and direct the organization towards
defined goals and objectives.

2. Commitment. Management must show commitment
to the adopted policy of improvement by its example
so that other people can follow them. Also,
commitment is required from every member of the
organization. The level of this commitment may vary
between individuals, but management must be
balanced and build a team that will stand behind the
project.

3. Honesty. Many organizations only rhetorically work
on improvement projects and cannot face the truth
about their environment. Organizations that are not
honest in their intentions, as well as their
shortcomings and failures, are too weak to take any
action for improvement.

4. Training. Once the guidelines are adopted, the
organization must mobilize to support them. Training
on the chosen model or approach should show people
the behaviors that are expected of them. The training
itself often does not teach behavior, so the
organization must carefully separate training on
individual topics of behavior in specific situations.

5. Professionalism. Requirements identification, cost
estimation, systems engineering, systems testing, and
project management are all formal professions today.
Each of these professions implies certain knowledge,
so well-trained and skilled professionals must be
appointed to such professional positions.

It is obvious that the dominance of the sociological
component within all prerequisites causes their relation to
factors from the category “People” from Table 1, whether
they refer to SPI managers, developers, or other people.
Such people must be skilled in software engineering and
able to automatically adjust their activities to the optimal
goals of the system during the program. The set of
solutions or the solution to a recognized problem, as well
as the time and effort required, will vary the most due to
the different approaches of individuals and teams.

5 Conclusion

CMM models are one of the standard frameworks for
software processes improvement. Along with their first
introduction into the industrial community, they started a
discussion about new approaches to achieve maximum
improvement, with minimal costs, and in different types
of software organizations. The quality of the processes, as
well as the use of statistical controls to maintain
continuous progress, is constantly emphasized. However,
the software is not similar to any other product and it is
difficult to compare the path to its improvement with other
products. Software development, like other design and
engineering jobs, is not mechanized or disciplined
production. It contains a strong creative component that
includes human and social interaction and that cannot be
fully planned in a standard or detailed process model. An
additional problem is the implementation of CMM-based
models in small and medium-sized companies and
organizations. Frequent ambiguity of the model and its
complexity, in addition to all the previously identified
risks, leave a lot of space for failure and abandonment of
CMM-based improvement programs. In this paper the
assumptions that an organization must meet in order to
approach such general efforts are analyzed.

CMM does not describe how to create an effective
software organization. It contains behaviors or best
practices that such successful companies should
demonstrate. If a company or organization is CMM
compatible, it is not a guarantee that the software project
will be successful, although it is true that this
compatibility can increase the chances of the project being
successful. In order to reach the desired level of maturity,
it is necessary to start and lead improvement programs.
The empirical IDEAL model for improvement created in
SEI provides a good foundation for initiating and leading
a cycle of continuous improvement. This model uses
already recognized techniques and methods of general
management and change management, which together
create an environment for overcoming business problems
and creating a successful organization.

Small companies and organizations involved in
software development and maintenance initially have a
higher risk when implementing improvement programs
based on CMM models. Characteristic factors for the
success or failure of SPIs are most often related to general
change management activities. SPI programs are, in fact,
related to change management in a software organization.
Although considered dynamic and ready for constant
change in the business environment, risks of failure are
pronounced when it comes to small organizations.

Software process improvement and project risk
reduction require exceptional efforts to change
organizational culture. If the organization is not able to
provide such preconditions, then it is probably not worth
spending resources on SPI.

Science, Engineering and Technology Vol. 2, No. 1, pp. 7-15

15

Competing Interest Statement

The authors declare no known competing financial
interests or personal relationships that could have
influenced the work reported in this paper.

Data Availability Statement

No data or additional materials were utilized for the
research described in the article.

References

[1] W. S. Humphrey, "Characterizing the software process: a
maturity framework," IEEE software, vol. 5, no. 2, pp. 73-
79, 1988.

[2] W. E. Deming, Out of the crisis, Cambridge, Mass.:
Massachusetts Institute of Technology, Center for
Advanced Engineering Study, 1986.

[3] C.Tully, "European SPI-Glass," IEEE Software Process
Newsletter, no. 12, 1998.

[4] M. C. Paulk, "Using the Software CMM in Small
Organizations," in Proceedings of the 8th International
Conference on Software Quality, Portland, 1998.

[5] J. D.L. and B. J.G., "Tailoring the CMM for Small
Business, Small Organizations, and Small Projects,"
Software Process Newsletter, IEEE Computer Society
Technical Council on Software Engineering, no. 8,
Winter 1997.

[6] Konrad, M. Chrissis, J. Ferguson, S. Garcia, W. Hefley,
D. Kitson and M. Paulk, "Capability Maturity Modeling
at the SEI," Software Process: Improvement and
Practice, vol. 2, no. 1, pp. 21-34, 1996.

[7] P. Mark C., "A History of the Capability Maturity Model
for Software," ASQ Software Quality Professional, vol.
12, no. 1, pp. 5-19, 2009.

[8] M. C. Paulk, "The Capability Maturity Model – A
Summary," Crosstalk: the Journal of Defense Software
Engineering, vol. 12, no. 5, p. 4, 1999.

[9] ISO, "Software Process Assessment - Part 4: Guidance on
use for process improvement and process capability
determination. Technical report. ISO/IEC 15504-
4:2004," International Organization for Standardization,
2004.

[10] SEI, "CMMI for Systems Engineering, Software
Engineering, Integrated Product and Process
Development, and Supplier Sourcing (CMMI-
SE/SW/IPPD/SS, V1.1) Staged Representation.
Technical report, CMU/SEI-2002-TR-012 ESC-TR-
2002-012," Software Engineering Institute, 2002.

[11] C. Valentine and I. Richardson, "A practical application
of the IDEAL model," Software Process: Improvement
and Practice, vol. 9, no. 3, pp. 123-132., 2004.

[12] A. Laryd and T. Orci, "Dynamic CMM for Small
Organizations," in Proceedings of the First Argentine
Symposium on Software Engineering, Tandil, Argentina,
2000.

[13] R. V. Horvat, I. Rozman and J. Gyorkos, "Managing the
Complexity of SPI in small companies," Software
Process: Improvement and Practice, vol. 5, no. 1, p. 45–
54, 2000.

[14] N. Wongsai, S. Veeraporn and W. Rattana, "Factors of
influence in software process improvement: An ISO/IEC
29110 for very-small entities," in 2015 7th International
Conference on Information Technology and Electrical
Engineering (ICITEE), pp. 12-17. IEEE, 2015.

[15] K. Steffen, P. Dietmar, J. Kristjan, D. Philipp, M. Jürgen
and K. Marco, "How has SPI changed in times of agile
development? Results from a multi‐method study,"
Journal of Software: Evolution and Process, vol. 31, no.
11, 2019.

[16] W. S. Humphrey, Managing the software process,
Boston: Addison-Wesley Longman Publishing Co., Inc.,
1989.

[17] J. J. Abbott, "Software Process Improvement in a Small
Commercial Software Company," in 1997 Software
Engineering Process Group Conference, San Jose, CA,
17-20 March 1997.

[18] D. L. Johnson and J. G. Brodman, "Applying the CMM
to Small Organizations and Small Projects," in 1998
Software Engineering Process Group Conference,
Chicago, Chicago, IL, 9-12 March 1998.

[19] H. Conradi and F. Alfonso, "Improving software process
improvement," IEEE software, vol. 19, no. 4, pp. 92-99,
2002.

[20] K. Kautz, "Software process improvement in very small
enterprises: does it pay off?," Software Process:
Improvement and Practice, vol. 4, no. 4, pp. 209-226,
1998.

[21] S. Rifkin, "Is process improvement irrelevant to produce
new era software?," in European Conference on Software
Quality, pp. 13-16. Springer, Berlin, Heidelberg, 2002.

[22] I. Allison, "Organizational factors shaping software
process improvement in small-medium sized software
teams: A multi-case analysis," in 2010 Seventh
International Conference on the Quality of Information
and Communications Technology, pp. 418-423. IEEE,
2010.

[23] T. Micheal and A. Yirsaw, "Factors affecting
development process in small software companies," in
2019 IEEE/ACM Symposium on Software Engineering in
Africa (SEiA), pp. 16-23. IEEE, 2019.

[24] K. Marco, D. Philipp and M. Jürgen, "Software process
improvement: a systematic mapping study on the state of
the art," PeerJ Computer Science, no. 2, 2016.

[25] D. Tore, "Factors of software process improvement
success in small and large organizations: an empirical
study in the scandinavian context," ACM SIGSOFT
Software Engineering Notes, vol. 28, no. 5, pp. 148-157,
2003.

[26] F. Alfaro, S. Cynthia and D. Abraham, "CMMI Adoption
and Retention Factors: A Systematic Literature Review,"
in International Conference on Software Process
Improvement, pp. 15-28. Springer, Cham, 2021.

