Science, Engineering and Technology Vol. 5, No. 2, Online First

www.setjournal.com https://doi.org/10.54327/set2025/v5.i2.305

A Comparative Case Study of Two Pedagogical Approaches in Web
Development Education: From a Traditional Java Environment to a
Modern Ruby on Rails Ecosystem

Keiichi Takahashi
Humanity-Oriented Science and Engineering, Kindai University, lizuka 8208555, Japan.

Abstract

This study presents a comparative case study of the evolution of a software development course at Kindai University.
We analyze two distinct pedagogical ecosystems: a traditional course based on Java Servlet/JSP with a local integrated
development environment (IDE), and its subsequent iteration, a modern course employing the Ruby on Rails framework
(a Web Application Framework, or WAF), Git for version control, a cloud-based IDE, and Platform as a Service (PaaS)
for deployment. This study was not a controlled experiment isolating the effects of a WAF but rather an exploratory
analysis of how a shift in the entire toolchain impacted student outcomes and perceptions. Quantitative analyses of
student projects over three years for each course revealed that the modern Ruby-based ecosystem resulted in applications
with approximately 50% more screens and screen transitions, despite requiring approximately 40% less source code.
Furthermore, student surveys indicated significantly higher comprehension and interest in the modern courses. However,
the number of data models and user stories remained consistent, suggesting that upstream design thinking was less
affected by the technology stack. These findings suggest that adopting a modern, integrated development ecosystem can
foster a more productive and engaging learning experience. We conclude by discussing the implications of these findings
for curriculum design, emphasizing the value of incorporating contemporary, industry-aligned toolchains into software
engineering education, while acknowledging that the observed benefits stem from the synergistic effect of multiple
technologies rather than from a single component.

Keywords: Computer Science Education, Software Engineering Curriculum, Web Application Frameworks (WAF),
Software Development Toolchain, Comparative Case Study.

1. Introduction In contrast, WAFs are equipped with numerous auto-

generation functions and support mechanisms through

In recent years, web application development libraries, which contribute to improving development

technologies have evolved rapidly. Accordingly, in efficiency. However, these features tend to create a

software development education at institutions of higher .. » L
|) he ducti ¢ tools and techni liened black-box™” effect, obscuring internal processes and
earning, the introduction of tools and techniques aligne potentially hindering the fundamental understanding of

with real-world practices is increasingly required [1]. the model by beginners [3]. Despite these advantages, the

Web Application Frameworks (WAFs) have become contribution of WAF to students’ learning outcomes in

essential technologies in modern software development educational contexts remains insufficiently verified.

environments, with increasing adoption in educational
settings [2].

Corresponding author: Keiichi Takahashi (ktakahas@fuk.kindai.ac jp)
Received: 4 July 2025; Revised: 2 October 2025; Accepted: 6 October 2025; Published: 10 October 2025
© 2025 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License

Online First

https://creativecommons.org/licenses/by/4.0/

Science, Engineering and Technology

Vol. 5, No. 2, Online First

This paper presents a comparative case study of the
evolution of a web application development course in a
real-world educational setting. Rather than a controlled
experiment, this study documents and analyzes the shift
between two distinct pedagogical ecosystems: a
traditional course centered on Java/JSP and its subsequent
iteration built upon a modern, integrated ecosystem
including the Ruby on Rails framework (WAF), Git, a
cloud integrated development environment (IDE), and
Platform as a Service (PaaS) deployment. This study
aimed to explore the observed differences in student
deliverables, development processes, and learning
perceptions that arose during this technological transition.
By analyzing this evolution, we seek to provide valuable
insights for educators facing similar challenges in
adapting their curricula to rapid changes in software
development practices.

The remainder of this paper is organized as follows.
Section 2 provides the study background and discusses the
educational features of WAFs. Section 3 reviews the
related literature and situates this study within that
context. Section 4 details the course design and
implementation. Section 5 presents the results of the
analysis. Section 6 discusses the educational implications
of the findings. Finally, Section 7 concludes the paper and
suggests future research directions.

2. Background and Motivation

In web application development, WAFs are widely
used as an essential foundation for improving productivity
and maintainability of the applications. Representative
WAFs include ASP.NET, Laravel, Ruby on Rails, and
Django [4]. All of these are based on the Model-View-
Controller (MVC) architecture and assist developers in
efficiently producing high-quality software through
features such as auto-generation and rich libraries [5].

WAFs are increasingly being introduced into
educational settings, and by using them, students can
experience development methods closer to industry
practice. Because complex features, such as screen
transitions and database integration, can be implemented
in a relatively short time, this approach may enhance
student motivation and a sense of achievement [2].

However, there are educational concerns associated
with the introduction of WAFs. Because many processes

in a WAF are encapsulated within the framework, it can
be difficult for beginners to understand the operations that
occur behind the scenes [6], [7]. For example, when errors
occur, students who do not understand how the framework
works may receive error messages from the framework’s
internal modules, and learning how to handle such errors
may take time. Therefore, while education using WAFs
can be efficient when students follow procedures
correctly, it has been argued that it is not necessarily
suitable for deepening students’ understanding of the
essential mechanisms of web applications [8], [9].

At Kindai University, a course on web application
development using Java was offered. This Java-based
course does not use a WAF; instead, it uses basic
technologies such as Servlets, Java Server Pages (JSP),
and Java Database Connectivity (JDBC) to help students
gradually learn the basic structure and processing flow of
web applications through development [10]. Although
this method offers greater implementation flexibility, one
drawback is that students must write a larger amount of
code, making even simple functions time-consuming.

To address this issue, the department considered
introducing WAF. Although WAFs exist for Java, Ruby
on Rails (Rails) was selected because it is easier for
beginners to learn and is widely used in industrial projects
[11], [12]. Rails is written in Ruby, which emphasizes
programmer-friendly code. Rails offer concise coding and
extensive auto-generation features that allow even
beginners to implement core functions quickly and easily.
Additionally, Rails works well with modern development
tools such as Git for version control, Render for web app
deployment, and AWS Cloud9, a cloud-based IDE,
making it a good foundation for incorporating modern
development practices into education [13], [14].

Based on this background, the present study compares
the differences between Java- and Ruby-based courses in
the same curriculum. By aligning conditions such as
development time, instructional structure, team
composition, and submission format, we aim to clarify
how the introduction of a WAF affects learning outcomes
and student activities.

3. Related Work

In recent years, software development education has
increasingly incorporated Project-Based Learning (PBL)

Online First2

Science, Engineering and Technology

Vol. 5, No. 2, Online First

to help students cultivate technical skills and teamwork
abilities through hands-on development experiences [15].
Many examples have reported the use of web application
development as a central activity, enabling students to
learn development workflows and tools that closely
resemble actual practices.

In particular, the use of Web Application Frameworks
(WAFs), such as Rails and Django, is expanding in
educational ~ contexts both domestically and
internationally [14], [16]. Using WAFs, complex
processes such as screen generation and database
integration can be implemented more easily, enabling
students to build practical web applications within a short
period. Because even beginners can produce visible
results with relatively little effort, this approach is also
considered effective for boosting motivation and
engagement [17].

Moreover, the use of Git and AWS Cloud9 in
education is progressing [18]. Cloud-based IDEs, such as
AWS Cloud9, reduce the burden of environment setup,
which is often difficult for beginners, and allow students
to continue learning outside the classroom. These tools are
reported to enhance self-directed learning and promote
better collaboration among team members [19].

However, few studies have compared the educational
effects of WAFs with those of courses that do not use
WAFs. Most prior research has focused on reporting the
educational outcomes of individual courses that have
adopted WAFs without quantitatively comparing the
outcomes or learning behaviors between WAF and non-
WAF approaches [20]. Although concerns have been
raised that the abstraction provided by WAFs makes it
harder for students to wunderstand the underlying
mechanisms of software, this issue has not been
sufficiently examined in empirical studies [21].

Therefore, this study aims to clarify the quantitative
and qualitative educational effects of WAFs by
comparing the deliverables from a Ruby-based course that
uses a WAF with those from a Java-based course that does
not use a WAF. Such comparisons are rarely seen in
previous studies and are expected to provide valuable
insights into the advantages and challenges of using
WAFs by beginners.

4. Methodology

4.1. Course design

The two courses analyzed in this study—one Java-
based and one Ruby-based—were both programming
practicum courses on web application development for
third-year students at Kindai University. The courses were
designed to provide hands-on experience of the full
development process through team-based projects that
reflect real-world practices.

The two courses shared the following structural
elements.

e C(Classes held once a week, consisting of two
consecutive periods (3 hours total) for 14 sessions

e First 6 sessions: Individual learning of advanced web
development techniques

o Final &8 Planning, designing, and
implementing a web application in two-person teams

sessions.

e Final session: Presentation of deliverables

Team development began with upstream processes,
such as defining user stories, designing data models, and
planning screen transitions, followed by implementation
using the appropriate development tools. Students were
allowed to freely choose their development themes;
however, instructors provided advice during the planning
phase to ensure that the projects were both feasible and
educationally effective.

The key differences between the courses were the
development tools and environments used (Figure 1).

o Java-based course: Web application development
using Java Servlet, JSP, and JDBC. Eclipse was used
as the IDE, and source code was manually shared
among team members, and no version-control
system was used.

® Ruby-based course: Development was conducted
using WAF Ruby on Rails. AWS Cloud9 was used
as the development environment. Git was used for
version control, GitHub as the remote repository, and
deployment was performed using the Render
platform.

Teams were formed by instructors based on students’
performance in the individual technical exercises in the
first half of the course, with the goal of balancing skill
levels within each team.

Online First3

Science, Engineering and Technology

Vol. 5, No. 2, Online First

Render
Git / GitHub
I Eclipse AWS Cloud9
MVC / Routing
ISP / Java Servlet IDBC ERB Helper ORM
HTML | CSS | HTTP saL HTML CsS HTTP saL

Java-based course (non-WAF) Ruby-based course (WAF)

Figure 1. Technical components covered in the Java- and
Ruby-based courses. The orange-colored elements indicate the
components supported by the WAF.

4.2. Grading criteria

Students’ grades were determined based on four
components.

e [Individual reports (30%): Progress on individual
technical exercises and written reports during the
team development phase

e Developed system (40%): Quality of the final
application, including design, implementation,
completeness, and usability

o Team contribution (20%): Quantitatively assessed
using each member’s share of the total lines of code
(LOC)

e Presentation (10%): Quality of the final

presentation, including explanation and supporting

materials

Team contribution was calculated as each student’s
LOC divided by the team’s total LOC. If a member’s
contribution was significantly low, their score was
adjusted accordingly.

4.3. Development support environment and
educational considerations

In the Ruby-based course, Amazon’s AWS Cloud9
platform (provided for educational use) was employed as
the development environment to eliminate the complexity
of local setup. This allowed all students to work within a
unified Linux environment, operate terminals, and
experience practices such as version control and
deployment to a PaaS, closely resembling real-world
software development.

In contrast, the Java-based course relied on desktop
computers in the university’s computer lab, which often
led to delays in setup and team-based file sharing.

4.4. Study design and limitations

It is crucial to acknowledge the design and limitations
of this study. This research is presented as an exploratory
comparative case study that examines the evolution of a
course over several years rather than as a controlled
experiment. As such, there are several significant
confounding variables between the two ecosystems. The
key differences include (1) the programming language
(Java vs. Ruby), (2) the use of a WAF, (3) the mandatory
use of a version control system (Git/GitHub) in the Ruby
course, (4) the development environment (a local IDE vs.
a cloud-based IDE), and (5) the deployment method
(manual vs. PaaS). Therefore, this study does not seek to
isolate the causal effects of any single variable. Instead, it
aims to provide a comprehensive analysis of the observed
differences in outcomes and student perceptions when a
pedagogical approach transitions from a traditional to a
modern integrated one. The quantitative metrics
presented, such as LOC, should be interpreted with
Given the in languages and
frameworks, LOC was not used here as a direct measure

caution. differences
of productivity, but rather as a descriptive indicator to
illustrate the different nature of the development work
undertaken by students in each environment.

5. Results and Analysis
5.1. Number of teams

The Java- and Ruby-based courses were each offered
three times over six years. Figure 2 shows the number of
teams for each type of implementation in the project. Each
team consisted of two members. The deliverables
analyzed for both the Java- and Ruby-based courses were
aggregated across the three offerings. There were 25 and
28 teams in the Java-and Ruby-based courses,
respectively.

Online First4

Science, Engineering and Technology

Vol. 5, No. 2, Online First

12
10

Number of Teams

o N B O

|

@ Ruby-based course

1 2

Year of Experiment

W Java-based course

Figure 2. Number of teams across the three implementations
of the Java-based and Ruby-based courses.

5.2. Source code LOC (Lines of Code)

The source code produced by each team in both
courses was aggregated, and the number of LOC was
measured. For the Ruby-based course, files automatically
generated by Rails were excluded, and only the code
written directly by students was included in the count. A
boxplot of these results is presented in Figure 3. The
median LOC for the Java-based course was 1252, while
the Ruby-based course had a median LOC of 738. Thus,
the students in the Java-based course wrote approximately
70% more source code.

4000
3500

ok

@ @

Median: 1252.0

—Median: 738.0—

I

Ruby-baséd course

Java-baséd course
Figure 3. LOC comparison between Java-based and Ruby-
based courses. The median LOC for the Java-based course was
70% higher than that for the Ruby-based course.

Java generally requires more lines of code than Ruby.
However, because the course durations were identical,
this result suggests that the students in the Java-based
course had to spend more time writing code. Welch’s t-
test indicated a statistically significant difference between
the two groups (p < 0.01). Therefore, it was demonstrated
that the non-WAF Java-based teams produced
significantly more code than the Ruby-based teams that
used WAF.

5.3. Number of screens and screen transitions

Figures 4 and 5 show the number of screens and screen
transitions implemented by each team in both courses.
The median number of screens was six for Java-based
applications and nine for Ruby-based applications. The
median number of screen transitions was 9 for Java-based
applications and 13.5 for Ruby-based applications. In
both cases, the Ruby-based teams implemented
approximately 50% more than the Java-based teams.

Welch’s t-test confirmed statistically significant
differences (p < 0.05).
20 *
I 1

w =]

<

GJ —

015

O

wn

210 :

] Median: 9.0——

: | vE

g 5 Median: 6.0

=

java-baséd course Ruby-baséd course
Figure 4. Number of screens implemented. The Ruby-based
course had 50% more screens than the Java-based course,

based on the median values.

w
o
*

N
%3

N
(=}

=
]

——Median: 13.5——

-
(=

Median: 9.0

w

Number of Screen Transitions

Java-based course Ruby-based course

Figure 5. Number of screen transitions: The Ruby-based
course had 50% more transitions than the Java-based course
based on median values.

Web applications typically require dynamic screen
displays based on various data. As the number of screens
increases, the complexity of data coordination between
the screens also increases. Therefore, comparing the
screen and transition counts allows for an indirect
evaluation of the functional complexity. These results
suggest that Ruby-based teams implemented more
functions.

Online First5

Science, Engineering and Technology

Vol. 5, No. 2, Online First

5.4. Number of models and user stories

The number of models corresponded to the number of
the database tables. In general, a larger number of models
implies greater implementation complexity. The number
of user stories was obtained from each team’s submitted
design documents. There were no restrictions on the
number of user stories; the teams were free to define them
during the planning phase of the project.

Figures 6 and 7 show the number of models and user
stories, respectively. The median number of models was
four for both the courses. The median number of user
stories was 6 for Java-based and 5.5 for Ruby-based,
indicating a slight difference. Welch’s t-test showed no
statistically significant difference between the two
groups.

10
wn 8
(]
S -
Q
Z 6
—
(=}
g 4 ——Median: 4.0——
£
>

Java—baséd course Ruby—baséd course
Figure 6. Number of models. Both courses had identical

median values.

12

10 . .

Median: 6.0

——Maedian: 5.5——

Number of User Stories
[+)]

Java-baséd course Ruby-baséd course
Figure 7. Number of user stories. The Java-based course had a

slightly higher median, but the difference was minimal.

Because the number of models and user stories is
determined during the initial planning phase, it likely
depends on students’ ability to extract requirements. The
lack of a significant difference suggests that students’
application planning skills were similar across both
courses.

5.5. Course evaluation survey

At this university, course evaluation surveys are
conducted during the final sessions of each course. The
survey consisted of standardized questions on a five-point
Likert scale, supplemented with free-text comments. The
responses were anonymized and aggregated. Outliers
(e.g., incomplete or inconsistent answers) were excluded.
Welch’s t-test was employed to assess statistical
significance. For this analysis, we extracted responses
related to students’ behavior and attitude toward the
course and compared the results between the Java-based
course (N=50) and the Ruby-based course (N=58). The
following six questions were analyzed. Responses to Q1—
Q4 were measured on a five-point Likert scale.

o (QI: Did you understand the course content?

o (Q2: Did the course stimulate your interest in the
subject?

o (03: Did you stay focused during class and avoid
unrelated conversations or activities?

o (4: Was the classroom environment and equipment
satisfactory?

e (5: How many hours per week, on average, did you
spend on self-study outside the class?

o (6: Please rate this course on a scale of 1-10.

The average responses to Q1—Q4 are shown in Figure
8. For all items, the Ruby-based course received higher
ratings from the students. Welch’s t-test indicated
statistically significant differences for Q1, Q2, and Q4.

* %

v 4 L ﬁ;\
3 4.2
(V] *
E 4
2 3.8
oo
[1°]
5 3.6 I
z

3.4

Q1 Q2 Q3 Q4

W Java-based course @ Ruby-based course

Figure 8. Average scores for Q1 to Q4. The Ruby-based
course received higher ratings in all categories, with
significant differences in Q1, Q2, and Q4 scores.

The average responses to Q5 and Q6 are presented in
Table 1. Q5 assessed students’ study time outside class,
and Q6 assessed their overall evaluation of the course. No
significant differences were observed between the two
groups.

Online First6

Science, Engineering and Technology

Vol. 5, No. 2, Online First

Table 1. Average scores for Q5 and Q6 (self-study time and
overall course evaluation).

Question Java-based course Ruby-based course
Q5 2.6 hours 2.9 hours
Qo6 8.1/10 8.3/10

6. Discussion

The results of this comparative case study highlight
significant differences in student outcomes and
perceptions between a traditional Java-based course and a
course built on a modern integrated Rails ecosystem. This
section discusses the potential factors contributing to
these differences, interpreting them not as the effect of a
single variable but as the synergistic outcome of a shift in
the entire pedagogical toolchain.

6.1. The impact of a modern ecosystem on
development outcomes

The analysis revealed that students in the Ruby-based
course produced applications with approximately 50%
more screens and transitions, despite writing
approximately 40% less code than their Java-based
counterparts did. This notable difference in output can be
attributed to a combination of factors in the modern
ecosystem. The Rails framework itself contributed
significantly through features such as scaffolding for
CRUD operations and a strong adherence to the
“Convention over Configuration” (CoC) principle, which
reduced boilerplate code. The rich ecosystem of libraries
(gems) further lowers the barrier to implementing
complex features. However, other components of the
ecosystem are also critical. The use of Git and GitHub
facilitated collaboration, reducing the friction of manual
file sharing that characterized the Java course.
Furthermore, the cloud-based IDE (AWS Cloud9)
eliminated time-consuming local environment setup and
troubleshooting, allowing students to focus more on the
limited class time on development itself. Thus, the
observed productivity gain is likely a composite effect of
the framework’s efficiency, smoother collaboration,

and a frictionless development environment.

6.2. The Role of the Toolchain in the Student
Learning Experience

Student surveys provide insights into the qualitative
aspects of the learning experience. The significantly
higher scores for the Ruby-based course in QI
(comprehension) and Q2 (interest) suggest a more
engaging and comprehensible learning experience. This
can be linked to several factors. For instance, the higher
score in Q1 (comprehension) may be partly attributable to
the clear structure imposed by the MVC architecture,
which provides students with a consistent and predictable
way of organizing their application. More importantly,
exposure to industry-standard tools such as Git, GitHub,
and cloud deployment (Render) likely boosted students’
interest and motivation (Q2). The most striking
difference was in Q4 (classroom environment and
equipment satisfactory), where the Ruby-based course
was rated significantly higher than the others. This result
cannot be reasonably attributed to the WAF but directly
corresponds to the use of the AWS Cloud9 IDE. It
eliminated the common frustrations of local environment
configuration, providing a consistent and accessible
platform for all students, which is a crucial factor in
student satisfaction.

6.3. Depth, breadth, and the evolving role of
fundamental knowledge

This study also sheds light on the classic trade-off
between the depth and breadth of technical understanding.
The Java-based course, by requiring students to handle
HTTP requests and database connections manually using
Servlets and JDBC, arguably provided a deeper
understanding of the fundamental mechanisms of web
applications. In contrast, the modern Ruby ecosystem,
while abstracting these low-level details, offers a greater
breadth of experience. Students engaged in a complete,
modern development workflow, including version
control, cloud development, and automated deployment.
Neither approach is inherently superior; rather, they serve
different educational goals. In particular, the Java/JSP-
based course, although less popular among students,
provides valuable opportunities for them to understand
the lower-level mechanisms of web applications in detail,
which can be beneficial for their long-term competence as
software engineers. The findings support the value of a
curriculum that balances both aspects: ensuring that

Online First7

Science, Engineering and Technology

Vol. 5, No. 2, Online First

students grasp fundamental concepts is critical for long-
term adaptability, while exposure to modern, high-
productivity toolchains is essential for preparing them for
contemporary industry practices.

6.4. Implications for curriculum design

Based on the findings of this
implications for curriculum design in software education
can be suggested. First, a curriculum that begins with

study, several

fundamental technologies before introducing more
abstract and high-level frameworks may be effective.
Second, although the use of modern, integrated
environments is useful for producing industry-ready
graduates, conceptual understanding must not be
sacrificed. Third, regardless of the core technology
taught, incorporating tools such as Git and cloud-based
IDEs can significantly enhance the quality of the learning
environment and collaborative experience. Finally, with
the efficiency gains from modern toolchains, it is feasible
to design projects that are larger in scale or are structured
around iterative development cycles.

7. Conclusion

This study presents a comparative case study of the
evolution of a web development course, analyzing the
shift from a traditional Java-based environment to a
modern integrated Rails ecosystem. Our findings show
that the modern ecosystem enabled students to develop
more functionally complex applications with significantly
less code and was associated with higher levels of student-
reported comprehension and interest than the traditional
ecosystem. We conclude that the adoption of a
comprehensive, modern toolchain—encompassing not
only a WAF but also version control, a cloud IDE, and
automated deployment—can foster a more productive,
motivating, and educationally valuable experience for
students preparing to enter the software industry than the
traditional toolchain can.

However, it is critical to reiterate that these benefits
cannot be attributed to the WAF alone, but rather appear
to be the synergistic effect of the entire technology stack
used. The abstraction provided by these modern tools may
also reduce students’ exposure to the fundamental
applications, highlighting the

mechanics of web

importance of a balanced curriculum that intentionally
addresses both foundational concepts and modern
practices in web development. This balance ensures that
while students benefit from modern toolchains, they also
acquire deeper technical knowledge that remains essential
for long-term adaptability. Our primary recommendation
for educators is to consider the entire development
ecosystem when designing courses and actively
incorporate industry-aligned tools to bridge the gap
between academia and professional practice.

Future research should address the limitations of this
study. More controlled experiments are needed, for
example, comparing courses that use the same
programming language with and without a WAF (e.g., a
plain Java course versus a Java Spring Boot course). To
rigorously evaluate learning outcomes, subsequent studies
should employ direct measures of knowledge acquisition,
such as pre- and post-course conceptual tests, in addition
to student surveys. Finally, the growing influence of Al-
powered code generation tools presents a new, significant
variable in software engineering education, and their
impact on framework-based teaching warrants dedicated
investigation.

Competing Interest Statement

The authors declare that they have no known conflicts
financial interests or personal relationships that could
have influenced the work reported in this article.

Data Availability Statement

No data or additional materials were utilized for the
research described in the article.

References

[1] N. Gharaibeh, “Improving Web Application Development
Course,” in Proc. Fifth National Conf. Saudi Computers

Colleges (NCCC), 2022, pp. 165-171, doi:
10.1109/NCCC57165.2022.10067861.
[2] S. Ivanova and G. Georgiev, “Using modern web

frameworks when developing an education application: a
practical approach,” 2019 42nd International Convention
on Information and Communication Technology,
Electronics and Microelectronics (MIPRO), Opatija,
Croatia, 2019, Pp- 1485-1491, doi:
10.23919/MIPRO.2019.8756914.

Online First8

Science, Engineering and Technology

Vol. 5, No. 2, Online First

[3] P. Hrkat, M. Mesko and M. Duracik, “A Custom
Framework for Innovative Approach of Teaching Web
Development Courses,” 2024 36th Conference of Open
Innovations Association (FRUCT), Lappeenranta, Finland,
2024, pp- 256-261, doi:
10.23919/FRUCT64283.2024.10749859.

[4] A. Aboryjilah, J. Adamu, S. M. Shariff and Z. Awang
Long, “Descriptive Analysis of Built-in Security Features
in Web Development Frameworks,” 2022 16th
International Conference on Ubiquitous Information
Management and Communication (IMCOM), Seoul,
Korea, Republic of, 2022, pp. 1-8, doi:
10.1109/IMCOM53663.2022.9721750.

[5] S. Ahmad, T. Rana, and A. Magbool, “A Model-Driven
Framework for the Development of MVC-Based (Web)
Application,” Arabian Journal for Science and
Engineering, vol. 47, pp. 1733-1747, 2021, doi:
10.1007/s13369-021-06087-4.

[6] B. Correa, F. Isaza, R. Mazo, R. Mazo, and G. Giraldo,
“CME — A Web Application Framework Learning
Technique Based on Concerns, Micro-Learning and
Examples,” In Mikkonen, T., Klamma, R., Herndandez, J.
(eds) Web Engineering. ICWE 2018. Lecture Notes in
Computer Science, vol 10845. Springer, Cham.
https://doi.org/10.1007/978-3-319-91662-0 2.

[7T M. Miura, “Block Sweetie: Learning Web Application
Development by Block Arrangement,” 2018 Thirteenth
International Conference on Knowledge, Information and
Creativity Support Systems (KICSS), Pattaya, Thailand,
2018, pp. 1-6, doi: 10.1109/KICSS45055.2018.8950653.

[8] N. Ichanska, “Tools and instruments for developing a web
application with student knowledge level testing,”
Mechanics And Mathematical Methods, 2024, doi:
10.31650/2618-0650-2024-6-1-95-106.

[9] C. R. Jaimez-Gonzélez and M. Castillo-Cortes, “Web
Application to Support the Learning of Programming
Through the Graphic Visualization of Programs”, Int. J.
Emerg. Technol. Learn., vol. 15, no. 06, pp. pp. 33-49,
Mar. 2020, doi: 10.3991/ijet.v15i06.12157.

[10]M. Gribanova-Podkina, “Database Connection
Technologies from JSP Pages and Java Web Application
Servlets,” Cybernetics and Programming, 2019, doi:
10.25136/2306-4196.2019.2.19589.

[11]P. Luczak, A. Poniszewska-Maranda, and V. Karovic,
“The Process of Creating Web Applications in Ruby on
Rails,” in Developments in Information & Knowledge

Management for Business Applications, 2020, doi:
10.1007/978-3-030-62151-3 9.

[12]1H. F. Putri, R. S. Perdana, Y. Gunawan, K. Manaf, H. H.
Solihin and B. Subaeki, “Analysis of Supporting
Information Systems for Seminar Activities Using the
Ruby on Rails Framework,” 2023 [7th International
Conference on Telecommunication Systems, Services, and

Applications (TSSA), Lombok, Indonesia, 2023, pp. 1-4,
doi: 10.1109/TSSA59948.2023.10367025.

[13]1D. Naranjo, J. Prieto, G. Molto, and A. Calatrava, “A
Visual Dashboard to Track Learning Analytics for
Educational Cloud Computing,” Sensors (Basel,
Switzerland), vol. 19, no. 13, pp. 2952, 2019, doi:
10.3390/s19132952.

[14]L. Lu, “Design and Implementation of an Interactive
Information System for University Education under the
Cloud Service Model,” 2020 IEEE Conference on
Telecommunications, Optics and Computer Science
(TOCS), Shenyang, China, 2020, pp. 377-381, doi:
10.1109/TOCS50858.2020.9339620.

[15]D. Stahl, K. Sandahl and L. Buffoni, “An Eco-System
Approach to Project-Based Learning in Software
Engineering Education,” in/EEE Transactions on
Education, vol. 65, no. 4, pp. 514-523, Nov. 2022, doi:
10.1109/TE.2021.3137344.

[16]A. Paul, M. Dela, R. Paul, and P. Abad, “Leveraging
Technology for Teaching and Learning: Developing a
Django-based Quiz Application for Education,” Journal of
Information Systems Engineering and Management, 2025,
doi: 10.52783/jisem.v10i13s.2008.

[17]1M. Wilkinson, A. Schechter, B. Lukens, [. Wright, and J.
Cardarelli, “A Web Development and Cloud Deployment
Framework for a Software Engineering Course,” in Proc.
55th ACM Technical Symposium on Computer Science
Education V. 2,2024, doi: 10.1145/3626253.3635410.

[18]Y. Borse and S. Gokhale, “Cloud Computing Platform for
Education System: A Review,” International Journal of
Computer Applications, vol. 177, no. 9, 2019, doi:
10.5120/ijca2019919475.

[19]N. Baanqud, H. Al-Samarraie, A. Alzahrani, and O.
Alfarraj, “Engagement in cloud-supported collaborative
learning and student knowledge construction: a modeling
study,” International Journal of Educational Technology
in Higher Education, vol. 17, no. 56, 2020, doi:
10.1186/s41239-020-00232-z.

[20]B. Pedraga de Souza, D. S. Costa, D. O. Costa, B. A.
Bonifacio and P. S. Fernandes, “Using Frameworks for
Rapid Applications Development as Learning Object for
Teaching Web Programming,” 2018 XIII Latin American
Conference on Learning Technologies (LACLO), Sao
Paulo, Brazil, 2018, Pp- 356-362, doi:
10.1109/LACLO.2018.00068.

[21]J. Cito, J. Shen, and M. Rinard, “An Empirical Study on the
Impact of Deimplicitization on Comprehension in
Programs Using Application Frameworks,” in Proc.
IEEE/ACM 17th Int. Conf. Mining Software Repositories
(MSR), 2020, pp. 598-601, doi: 10.1145/3379597.3387507.

Online First9

	1. Introduction
	2. Background and Motivation
	3. Related Work
	4. Methodology
	4.1. Course design
	4.2. Grading criteria
	4.3. Development support environment and educational considerations
	4.4. Study design and limitations

	5. Results and Analysis
	5.1. Number of teams
	5.2. Source code LOC (Lines of Code)
	5.3. Number of screens and screen transitions
	5.4. Number of models and user stories
	5.5. Course evaluation survey

	6. Discussion
	6.1. The impact of a modern ecosystem on development outcomes
	6.2. The Role of the Toolchain in the Student Learning Experience
	6.3. Depth, breadth, and the evolving role of fundamental knowledge
	6.4. Implications for curriculum design

	7. Conclusion

