
Science, Engineering and Technology Vol. 5, No. 2, Online First

www.setjournal.com https://doi.org/10.54327/set2025/v5.i2.305

Corresponding author: Keiichi Takahashi (ktakahas@fuk.kindai.ac.jp)

Received: 4 July 2025; Revised: 2 October 2025; Accepted: 6 October 2025; Published: 10 October 2025

© 2025 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License

Online First

A Comparative Case Study of Two Pedagogical Approaches in Web

Development Education: From a Traditional Java Environment to a

Modern Ruby on Rails Ecosystem

Keiichi Takahashi

Humanity-Oriented Science and Engineering, Kindai University, Iizuka 8208555, Japan.

Abstract

This study presents a comparative case study of the evolution of a software development course at Kindai University.

We analyze two distinct pedagogical ecosystems: a traditional course based on Java Servlet/JSP with a local integrated

development environment (IDE), and its subsequent iteration, a modern course employing the Ruby on Rails framework

(a Web Application Framework, or WAF), Git for version control, a cloud-based IDE, and Platform as a Service (PaaS)

for deployment. This study was not a controlled experiment isolating the effects of a WAF but rather an exploratory

analysis of how a shift in the entire toolchain impacted student outcomes and perceptions. Quantitative analyses of

student projects over three years for each course revealed that the modern Ruby-based ecosystem resulted in applications

with approximately 50% more screens and screen transitions, despite requiring approximately 40% less source code.

Furthermore, student surveys indicated significantly higher comprehension and interest in the modern courses. However,

the number of data models and user stories remained consistent, suggesting that upstream design thinking was less

affected by the technology stack. These findings suggest that adopting a modern, integrated development ecosystem can

foster a more productive and engaging learning experience. We conclude by discussing the implications of these findings

for curriculum design, emphasizing the value of incorporating contemporary, industry-aligned toolchains into software

engineering education, while acknowledging that the observed benefits stem from the synergistic effect of multiple

technologies rather than from a single component.

Keywords: Computer Science Education, Software Engineering Curriculum, Web Application Frameworks (WAF),

Software Development Toolchain, Comparative Case Study.

1. Introduction

In recent years, web application development

technologies have evolved rapidly. Accordingly, in

software development education at institutions of higher

learning, the introduction of tools and techniques aligned

with real-world practices is increasingly required [1].

Web Application Frameworks (WAFs) have become

essential technologies in modern software development

environments, with increasing adoption in educational

settings [2].

In contrast, WAFs are equipped with numerous auto-

generation functions and support mechanisms through

libraries, which contribute to improving development

efficiency. However, these features tend to create a

“black-box” effect, obscuring internal processes and

potentially hindering the fundamental understanding of

the model by beginners [3]. Despite these advantages, the

contribution of WAF to students’ learning outcomes in

educational contexts remains insufficiently verified.

https://creativecommons.org/licenses/by/4.0/

Science, Engineering and Technology Vol. 5, No. 2, Online First

Online First2

This paper presents a comparative case study of the

evolution of a web application development course in a

real-world educational setting. Rather than a controlled

experiment, this study documents and analyzes the shift

between two distinct pedagogical ecosystems: a

traditional course centered on Java/JSP and its subsequent

iteration built upon a modern, integrated ecosystem

including the Ruby on Rails framework (WAF), Git, a

cloud integrated development environment (IDE), and

Platform as a Service (PaaS) deployment. This study

aimed to explore the observed differences in student

deliverables, development processes, and learning

perceptions that arose during this technological transition.

By analyzing this evolution, we seek to provide valuable

insights for educators facing similar challenges in

adapting their curricula to rapid changes in software

development practices.

The remainder of this paper is organized as follows.

Section 2 provides the study background and discusses the

educational features of WAFs. Section 3 reviews the

related literature and situates this study within that

context. Section 4 details the course design and

implementation. Section 5 presents the results of the

analysis. Section 6 discusses the educational implications

of the findings. Finally, Section 7 concludes the paper and

suggests future research directions.

2. Background and Motivation

In web application development, WAFs are widely

used as an essential foundation for improving productivity

and maintainability of the applications. Representative

WAFs include ASP.NET, Laravel, Ruby on Rails, and

Django [4]. All of these are based on the Model-View-

Controller (MVC) architecture and assist developers in

efficiently producing high-quality software through

features such as auto-generation and rich libraries [5].

WAFs are increasingly being introduced into

educational settings, and by using them, students can

experience development methods closer to industry

practice. Because complex features, such as screen

transitions and database integration, can be implemented

in a relatively short time, this approach may enhance

student motivation and a sense of achievement [2].

However, there are educational concerns associated

with the introduction of WAFs. Because many processes

in a WAF are encapsulated within the framework, it can

be difficult for beginners to understand the operations that

occur behind the scenes [6], [7]. For example, when errors

occur, students who do not understand how the framework

works may receive error messages from the framework’s

internal modules, and learning how to handle such errors

may take time. Therefore, while education using WAFs

can be efficient when students follow procedures

correctly, it has been argued that it is not necessarily

suitable for deepening students’ understanding of the

essential mechanisms of web applications [8], [9].

At Kindai University, a course on web application

development using Java was offered. This Java-based

course does not use a WAF; instead, it uses basic

technologies such as Servlets, Java Server Pages (JSP),

and Java Database Connectivity (JDBC) to help students

gradually learn the basic structure and processing flow of

web applications through development [10]. Although

this method offers greater implementation flexibility, one

drawback is that students must write a larger amount of

code, making even simple functions time-consuming.

To address this issue, the department considered

introducing WAF. Although WAFs exist for Java, Ruby

on Rails (Rails) was selected because it is easier for

beginners to learn and is widely used in industrial projects

[11], [12]. Rails is written in Ruby, which emphasizes

programmer-friendly code. Rails offer concise coding and

extensive auto-generation features that allow even

beginners to implement core functions quickly and easily.

Additionally, Rails works well with modern development

tools such as Git for version control, Render for web app

deployment, and AWS Cloud9, a cloud-based IDE,

making it a good foundation for incorporating modern

development practices into education [13], [14].

Based on this background, the present study compares

the differences between Java- and Ruby-based courses in

the same curriculum. By aligning conditions such as

development time, instructional structure, team

composition, and submission format, we aim to clarify

how the introduction of a WAF affects learning outcomes

and student activities.

3. Related Work

In recent years, software development education has

increasingly incorporated Project-Based Learning (PBL)

Science, Engineering and Technology Vol. 5, No. 2, Online First

Online First3

to help students cultivate technical skills and teamwork

abilities through hands-on development experiences [15].

Many examples have reported the use of web application

development as a central activity, enabling students to

learn development workflows and tools that closely

resemble actual practices.

In particular, the use of Web Application Frameworks

(WAFs), such as Rails and Django, is expanding in

educational contexts both domestically and

internationally [14], [16]. Using WAFs, complex

processes such as screen generation and database

integration can be implemented more easily, enabling

students to build practical web applications within a short

period. Because even beginners can produce visible

results with relatively little effort, this approach is also

considered effective for boosting motivation and

engagement [17].

Moreover, the use of Git and AWS Cloud9 in

education is progressing [18]. Cloud-based IDEs, such as

AWS Cloud9, reduce the burden of environment setup,

which is often difficult for beginners, and allow students

to continue learning outside the classroom. These tools are

reported to enhance self-directed learning and promote

better collaboration among team members [19].

However, few studies have compared the educational

effects of WAFs with those of courses that do not use

WAFs. Most prior research has focused on reporting the

educational outcomes of individual courses that have

adopted WAFs without quantitatively comparing the

outcomes or learning behaviors between WAF and non-

WAF approaches [20]. Although concerns have been

raised that the abstraction provided by WAFs makes it

harder for students to understand the underlying

mechanisms of software, this issue has not been

sufficiently examined in empirical studies [21].

Therefore, this study aims to clarify the quantitative

and qualitative educational effects of WAFs by

comparing the deliverables from a Ruby-based course that

uses a WAF with those from a Java-based course that does

not use a WAF. Such comparisons are rarely seen in

previous studies and are expected to provide valuable

insights into the advantages and challenges of using

WAFs by beginners.

4. Methodology

4.1. Course design

The two courses analyzed in this study—one Java-

based and one Ruby-based—were both programming

practicum courses on web application development for

third-year students at Kindai University. The courses were

designed to provide hands-on experience of the full

development process through team-based projects that

reflect real-world practices.

The two courses shared the following structural

elements.

• Classes held once a week, consisting of two

consecutive periods (3 hours total) for 14 sessions

• First 6 sessions: Individual learning of advanced web

development techniques

• Final 8 sessions: Planning, designing, and

implementing a web application in two-person teams

• Final session: Presentation of deliverables

Team development began with upstream processes,

such as defining user stories, designing data models, and

planning screen transitions, followed by implementation

using the appropriate development tools. Students were

allowed to freely choose their development themes;

however, instructors provided advice during the planning

phase to ensure that the projects were both feasible and

educationally effective.

The key differences between the courses were the

development tools and environments used (Figure 1).

• Java-based course: Web application development

using Java Servlet, JSP, and JDBC. Eclipse was used

as the IDE, and source code was manually shared

among team members, and no version-control

system was used.

• Ruby-based course: Development was conducted

using WAF Ruby on Rails. AWS Cloud9 was used

as the development environment. Git was used for

version control, GitHub as the remote repository, and

deployment was performed using the Render

platform.

Teams were formed by instructors based on students’

performance in the individual technical exercises in the

first half of the course, with the goal of balancing skill

levels within each team.

Science, Engineering and Technology Vol. 5, No. 2, Online First

Online First4

Figure 1. Technical components covered in the Java- and

Ruby-based courses. The orange-colored elements indicate the

components supported by the WAF.

4.2. Grading criteria

Students’ grades were determined based on four

components.

• Individual reports (30%): Progress on individual

technical exercises and written reports during the

team development phase

• Developed system (40%): Quality of the final

application, including design, implementation,

completeness, and usability

• Team contribution (20%): Quantitatively assessed

using each member’s share of the total lines of code

(LOC)

• Presentation (10%): Quality of the final

presentation, including explanation and supporting

materials

Team contribution was calculated as each student’s

LOC divided by the team’s total LOC. If a member’s

contribution was significantly low, their score was

adjusted accordingly.

4.3. Development support environment and

educational considerations

In the Ruby-based course, Amazon’s AWS Cloud9

platform (provided for educational use) was employed as

the development environment to eliminate the complexity

of local setup. This allowed all students to work within a

unified Linux environment, operate terminals, and

experience practices such as version control and

deployment to a PaaS, closely resembling real-world

software development.

In contrast, the Java-based course relied on desktop

computers in the university’s computer lab, which often

led to delays in setup and team-based file sharing.

4.4. Study design and limitations

It is crucial to acknowledge the design and limitations

of this study. This research is presented as an exploratory

comparative case study that examines the evolution of a

course over several years rather than as a controlled

experiment. As such, there are several significant

confounding variables between the two ecosystems. The

key differences include (1) the programming language

(Java vs. Ruby), (2) the use of a WAF, (3) the mandatory

use of a version control system (Git/GitHub) in the Ruby

course, (4) the development environment (a local IDE vs.

a cloud-based IDE), and (5) the deployment method

(manual vs. PaaS). Therefore, this study does not seek to

isolate the causal effects of any single variable. Instead, it

aims to provide a comprehensive analysis of the observed

differences in outcomes and student perceptions when a

pedagogical approach transitions from a traditional to a

modern integrated one. The quantitative metrics

presented, such as LOC, should be interpreted with

caution. Given the differences in languages and

frameworks, LOC was not used here as a direct measure

of productivity, but rather as a descriptive indicator to

illustrate the different nature of the development work

undertaken by students in each environment.

5. Results and Analysis

5.1. Number of teams

The Java- and Ruby-based courses were each offered

three times over six years. Figure 2 shows the number of

teams for each type of implementation in the project. Each

team consisted of two members. The deliverables

analyzed for both the Java- and Ruby-based courses were

aggregated across the three offerings. There were 25 and

28 teams in the Java-and Ruby-based courses,

respectively.

Science, Engineering and Technology Vol. 5, No. 2, Online First

Online First5

Figure 2. Number of teams across the three implementations

of the Java-based and Ruby-based courses.

5.2. Source code LOC (Lines of Code)

The source code produced by each team in both

courses was aggregated, and the number of LOC was

measured. For the Ruby-based course, files automatically

generated by Rails were excluded, and only the code

written directly by students was included in the count. A

boxplot of these results is presented in Figure 3. The

median LOC for the Java-based course was 1252, while

the Ruby-based course had a median LOC of 738. Thus,

the students in the Java-based course wrote approximately

70% more source code.

Figure 3. LOC comparison between Java-based and Ruby-

based courses. The median LOC for the Java-based course was

70% higher than that for the Ruby-based course.

Java generally requires more lines of code than Ruby.

However, because the course durations were identical,

this result suggests that the students in the Java-based

course had to spend more time writing code. Welch’s t-

test indicated a statistically significant difference between

the two groups (p < 0.01). Therefore, it was demonstrated

that the non-WAF Java-based teams produced

significantly more code than the Ruby-based teams that

used WAF.

5.3. Number of screens and screen transitions

Figures 4 and 5 show the number of screens and screen

transitions implemented by each team in both courses.

The median number of screens was six for Java-based

applications and nine for Ruby-based applications. The

median number of screen transitions was 9 for Java-based

applications and 13.5 for Ruby-based applications. In

both cases, the Ruby-based teams implemented

approximately 50% more than the Java-based teams.

Welch’s t-test confirmed statistically significant

differences (p < 0.05).

Figure 4. Number of screens implemented. The Ruby-based

course had 50% more screens than the Java-based course,

based on the median values.

Figure 5. Number of screen transitions: The Ruby-based

course had 50% more transitions than the Java-based course

based on median values.

Web applications typically require dynamic screen

displays based on various data. As the number of screens

increases, the complexity of data coordination between

the screens also increases. Therefore, comparing the

screen and transition counts allows for an indirect

evaluation of the functional complexity. These results

suggest that Ruby-based teams implemented more

functions.

Science, Engineering and Technology Vol. 5, No. 2, Online First

Online First6

5.4. Number of models and user stories

The number of models corresponded to the number of

the database tables. In general, a larger number of models

implies greater implementation complexity. The number

of user stories was obtained from each team’s submitted

design documents. There were no restrictions on the

number of user stories; the teams were free to define them

during the planning phase of the project.

Figures 6 and 7 show the number of models and user

stories, respectively. The median number of models was

four for both the courses. The median number of user

stories was 6 for Java-based and 5.5 for Ruby-based,

indicating a slight difference. Welch’s t-test showed no

statistically significant difference between the two

groups.

Figure 6. Number of models. Both courses had identical

median values.

Figure 7. Number of user stories. The Java-based course had a

slightly higher median, but the difference was minimal.

Because the number of models and user stories is

determined during the initial planning phase, it likely

depends on students’ ability to extract requirements. The

lack of a significant difference suggests that students’

application planning skills were similar across both

courses.

5.5. Course evaluation survey

At this university, course evaluation surveys are

conducted during the final sessions of each course. The

survey consisted of standardized questions on a five-point

Likert scale, supplemented with free-text comments. The

responses were anonymized and aggregated. Outliers

(e.g., incomplete or inconsistent answers) were excluded.

Welch’s t-test was employed to assess statistical

significance. For this analysis, we extracted responses

related to students’ behavior and attitude toward the

course and compared the results between the Java-based

course (N=50) and the Ruby-based course (N=58). The

following six questions were analyzed. Responses to Q1–

Q4 were measured on a five-point Likert scale.

• Q1: Did you understand the course content?

• Q2: Did the course stimulate your interest in the

subject?

• Q3: Did you stay focused during class and avoid

unrelated conversations or activities?

• Q4: Was the classroom environment and equipment

satisfactory?

• Q5: How many hours per week, on average, did you

spend on self-study outside the class?

• Q6: Please rate this course on a scale of 1–10.

The average responses to Q1–Q4 are shown in Figure

8. For all items, the Ruby-based course received higher

ratings from the students. Welch’s t-test indicated

statistically significant differences for Q1, Q2, and Q4.

Figure 8. Average scores for Q1 to Q4. The Ruby-based

course received higher ratings in all categories, with

significant differences in Q1, Q2, and Q4 scores.

The average responses to Q5 and Q6 are presented in

Table 1. Q5 assessed students’ study time outside class,

and Q6 assessed their overall evaluation of the course. No

significant differences were observed between the two

groups.

Science, Engineering and Technology Vol. 5, No. 2, Online First

Online First7

Table 1. Average scores for Q5 and Q6 (self-study time and

overall course evaluation).

6. Discussion

The results of this comparative case study highlight

significant differences in student outcomes and

perceptions between a traditional Java-based course and a

course built on a modern integrated Rails ecosystem. This

section discusses the potential factors contributing to

these differences, interpreting them not as the effect of a

single variable but as the synergistic outcome of a shift in

the entire pedagogical toolchain.

6.1. The impact of a modern ecosystem on

development outcomes

The analysis revealed that students in the Ruby-based

course produced applications with approximately 50%

more screens and transitions, despite writing

approximately 40% less code than their Java-based

counterparts did. This notable difference in output can be

attributed to a combination of factors in the modern

ecosystem. The Rails framework itself contributed

significantly through features such as scaffolding for

CRUD operations and a strong adherence to the

“Convention over Configuration” (CoC) principle, which

reduced boilerplate code. The rich ecosystem of libraries

(gems) further lowers the barrier to implementing

complex features. However, other components of the

ecosystem are also critical. The use of Git and GitHub

facilitated collaboration, reducing the friction of manual

file sharing that characterized the Java course.

Furthermore, the cloud-based IDE (AWS Cloud9)

eliminated time-consuming local environment setup and

troubleshooting, allowing students to focus more on the

limited class time on development itself. Thus, the

observed productivity gain is likely a composite effect of

the framework’s efficiency, smoother collaboration,

and a frictionless development environment.

6.2. The Role of the Toolchain in the Student

Learning Experience

Student surveys provide insights into the qualitative

aspects of the learning experience. The significantly

higher scores for the Ruby-based course in Q1

(comprehension) and Q2 (interest) suggest a more

engaging and comprehensible learning experience. This

can be linked to several factors. For instance, the higher

score in Q1 (comprehension) may be partly attributable to

the clear structure imposed by the MVC architecture,

which provides students with a consistent and predictable

way of organizing their application. More importantly,

exposure to industry-standard tools such as Git, GitHub,

and cloud deployment (Render) likely boosted students’

interest and motivation (Q2). The most striking

difference was in Q4 (classroom environment and

equipment satisfactory), where the Ruby-based course

was rated significantly higher than the others. This result

cannot be reasonably attributed to the WAF but directly

corresponds to the use of the AWS Cloud9 IDE. It

eliminated the common frustrations of local environment

configuration, providing a consistent and accessible

platform for all students, which is a crucial factor in

student satisfaction.

6.3. Depth, breadth, and the evolving role of

fundamental knowledge

This study also sheds light on the classic trade-off

between the depth and breadth of technical understanding.

The Java-based course, by requiring students to handle

HTTP requests and database connections manually using

Servlets and JDBC, arguably provided a deeper

understanding of the fundamental mechanisms of web

applications. In contrast, the modern Ruby ecosystem,

while abstracting these low-level details, offers a greater

breadth of experience. Students engaged in a complete,

modern development workflow, including version

control, cloud development, and automated deployment.

Neither approach is inherently superior; rather, they serve

different educational goals. In particular, the Java/JSP-

based course, although less popular among students,

provides valuable opportunities for them to understand

the lower-level mechanisms of web applications in detail,

which can be beneficial for their long-term competence as

software engineers. The findings support the value of a

curriculum that balances both aspects: ensuring that

Question Java-based course Ruby-based course

Q5 2.6 hours 2.9 hours

Q6 8.1 / 10 8.3 / 10

Science, Engineering and Technology Vol. 5, No. 2, Online First

Online First8

students grasp fundamental concepts is critical for long-

term adaptability, while exposure to modern, high-

productivity toolchains is essential for preparing them for

contemporary industry practices.

6.4. Implications for curriculum design

Based on the findings of this study, several

implications for curriculum design in software education

can be suggested. First, a curriculum that begins with

fundamental technologies before introducing more

abstract and high-level frameworks may be effective.

Second, although the use of modern, integrated

environments is useful for producing industry-ready

graduates, conceptual understanding must not be

sacrificed. Third, regardless of the core technology

taught, incorporating tools such as Git and cloud-based

IDEs can significantly enhance the quality of the learning

environment and collaborative experience. Finally, with

the efficiency gains from modern toolchains, it is feasible

to design projects that are larger in scale or are structured

around iterative development cycles.

7. Conclusion

This study presents a comparative case study of the

evolution of a web development course, analyzing the

shift from a traditional Java-based environment to a

modern integrated Rails ecosystem. Our findings show

that the modern ecosystem enabled students to develop

more functionally complex applications with significantly

less code and was associated with higher levels of student-

reported comprehension and interest than the traditional

ecosystem. We conclude that the adoption of a

comprehensive, modern toolchain—encompassing not

only a WAF but also version control, a cloud IDE, and

automated deployment—can foster a more productive,

motivating, and educationally valuable experience for

students preparing to enter the software industry than the

traditional toolchain can.

However, it is critical to reiterate that these benefits

cannot be attributed to the WAF alone, but rather appear

to be the synergistic effect of the entire technology stack

used. The abstraction provided by these modern tools may

also reduce students’ exposure to the fundamental

mechanics of web applications, highlighting the

importance of a balanced curriculum that intentionally

addresses both foundational concepts and modern

practices in web development. This balance ensures that

while students benefit from modern toolchains, they also

acquire deeper technical knowledge that remains essential

for long-term adaptability. Our primary recommendation

for educators is to consider the entire development

ecosystem when designing courses and actively

incorporate industry-aligned tools to bridge the gap

between academia and professional practice.

Future research should address the limitations of this

study. More controlled experiments are needed, for

example, comparing courses that use the same

programming language with and without a WAF (e.g., a

plain Java course versus a Java Spring Boot course). To

rigorously evaluate learning outcomes, subsequent studies

should employ direct measures of knowledge acquisition,

such as pre- and post-course conceptual tests, in addition

to student surveys. Finally, the growing influence of AI-

powered code generation tools presents a new, significant

variable in software engineering education, and their

impact on framework-based teaching warrants dedicated

investigation.

Competing Interest Statement

The authors declare that they have no known conflicts

financial interests or personal relationships that could

have influenced the work reported in this article.

Data Availability Statement

No data or additional materials were utilized for the

research described in the article.

References

[1] N. Gharaibeh, “Improving Web Application Development

Course,” in Proc. Fifth National Conf. Saudi Computers

Colleges (NCCC), 2022, pp. 165-171, doi:

10.1109/NCCC57165.2022.10067861.

[2] S. Ivanova and G. Georgiev, “Using modern web

frameworks when developing an education application: a

practical approach,” 2019 42nd International Convention

on Information and Communication Technology,

Electronics and Microelectronics (MIPRO), Opatija,

Croatia, 2019, pp. 1485-1491, doi:

10.23919/MIPRO.2019.8756914.

Science, Engineering and Technology Vol. 5, No. 2, Online First

Online First9

[3] P. Hrkút, M. Meško and M. Ďuračík, “A Custom

Framework for Innovative Approach of Teaching Web

Development Courses,” 2024 36th Conference of Open

Innovations Association (FRUCT), Lappeenranta, Finland,

2024, pp. 256-261, doi:

10.23919/FRUCT64283.2024.10749859.

[4] A. Aborujilah, J. Adamu, S. M. Shariff and Z. Awang

Long, “Descriptive Analysis of Built-in Security Features

in Web Development Frameworks,” 2022 16th

International Conference on Ubiquitous Information

Management and Communication (IMCOM), Seoul,

Korea, Republic of, 2022, pp. 1-8, doi:

10.1109/IMCOM53663.2022.9721750.

[5] S. Ahmad, T. Rana, and A. Maqbool, “A Model-Driven

Framework for the Development of MVC-Based (Web)

Application,” Arabian Journal for Science and

Engineering, vol. 47, pp. 1733-1747, 2021, doi:

10.1007/s13369-021-06087-4.

[6] B. Correa, F. Isaza, R. Mazo, R. Mazo, and G. Giraldo,

“CME – A Web Application Framework Learning

Technique Based on Concerns, Micro-Learning and

Examples,” In Mikkonen, T., Klamma, R., Hernández, J.

(eds) Web Engineering. ICWE 2018. Lecture Notes in

Computer Science, vol 10845. Springer, Cham.

https://doi.org/10.1007/978-3-319-91662-0_2.

[7] M. Miura, “Block Sweetie: Learning Web Application

Development by Block Arrangement,” 2018 Thirteenth

International Conference on Knowledge, Information and

Creativity Support Systems (KICSS), Pattaya, Thailand,

2018, pp. 1-6, doi: 10.1109/KICSS45055.2018.8950653.

[8] N. Ichanska, “Tools and instruments for developing a web

application with student knowledge level testing,”

Mechanics And Mathematical Methods, 2024, doi:

10.31650/2618-0650-2024-6-1-95-106.

[9] C. R. Jaimez-González and M. Castillo-Cortes, “Web

Application to Support the Learning of Programming

Through the Graphic Visualization of Programs”, Int. J.

Emerg. Technol. Learn., vol. 15, no. 06, pp. pp. 33–49,

Mar. 2020, doi: 10.3991/ijet.v15i06.12157.

[10] M. Gribanova-Podkina, “Database Connection

Technologies from JSP Pages and Java Web Application

Servlets,” Cybernetics and Programming, 2019, doi:

10.25136/2306-4196.2019.2.19589.

[11] P. Łuczak, A. Poniszewska-Marańda, and V. Karovič,

“The Process of Creating Web Applications in Ruby on

Rails,” in Developments in Information & Knowledge

Management for Business Applications, 2020, doi:

10.1007/978-3-030-62151-3_9.

[12] H. F. Putri, R. S. Perdana, Y. Gunawan, K. Manaf, H. H.

Solihin and B. Subaeki, “Analysis of Supporting

Information Systems for Seminar Activities Using the

Ruby on Rails Framework,” 2023 17th International

Conference on Telecommunication Systems, Services, and

Applications (TSSA), Lombok, Indonesia, 2023, pp. 1-4,

doi: 10.1109/TSSA59948.2023.10367025.

[13] D. Naranjo, J. Prieto, G. Moltó, and A. Calatrava, “A

Visual Dashboard to Track Learning Analytics for

Educational Cloud Computing,” Sensors (Basel,

Switzerland), vol. 19, no. 13, pp. 2952, 2019, doi:

10.3390/s19132952.

[14] L. Lu, “Design and Implementation of an Interactive

Information System for University Education under the

Cloud Service Model,” 2020 IEEE Conference on

Telecommunications, Optics and Computer Science

(TOCS), Shenyang, China, 2020, pp. 377-381, doi:

10.1109/TOCS50858.2020.9339620.

[15] D. Ståhl, K. Sandahl and L. Buffoni, “An Eco-System

Approach to Project-Based Learning in Software

Engineering Education,” in IEEE Transactions on

Education, vol. 65, no. 4, pp. 514-523, Nov. 2022, doi:

10.1109/TE.2021.3137344.

[16] A. Paul, M. Dela, R. Paul, and P. Abad, “Leveraging

Technology for Teaching and Learning: Developing a

Django-based Quiz Application for Education,” Journal of

Information Systems Engineering and Management, 2025,

doi: 10.52783/jisem.v10i13s.2008.

[17] M. Wilkinson, A. Schechter, B. Lukens, I. Wright, and J.

Cardarelli, “A Web Development and Cloud Deployment

Framework for a Software Engineering Course,” in Proc.

55th ACM Technical Symposium on Computer Science

Education V. 2, 2024, doi: 10.1145/3626253.3635410.

[18] Y. Borse and S. Gokhale, “Cloud Computing Platform for

Education System: A Review,” International Journal of

Computer Applications, vol. 177, no. 9, 2019, doi:

10.5120/ijca2019919475.

[19] N. Baanqud, H. Al-Samarraie, A. Alzahrani, and O.

Alfarraj, “Engagement in cloud-supported collaborative

learning and student knowledge construction: a modeling

study,” International Journal of Educational Technology

in Higher Education, vol. 17, no. 56, 2020, doi:

10.1186/s41239-020-00232-z.

[20] B. Pedraça de Souza, D. S. Costa, D. O. Costa, B. A.

Bonifácio and P. S. Fernandes, “Using Frameworks for

Rapid Applications Development as Learning Object for

Teaching Web Programming,” 2018 XIII Latin American

Conference on Learning Technologies (LACLO), Sao

Paulo, Brazil, 2018, pp. 356-362, doi:

10.1109/LACLO.2018.00068.

[21] J. Cito, J. Shen, and M. Rinard, “An Empirical Study on the

Impact of Deimplicitization on Comprehension in

Programs Using Application Frameworks,” in Proc.

IEEE/ACM 17th Int. Conf. Mining Software Repositories

(MSR), 2020, pp. 598-601, doi: 10.1145/3379597.3387507.

	1. Introduction
	2. Background and Motivation
	3. Related Work
	4. Methodology
	4.1. Course design
	4.2. Grading criteria
	4.3. Development support environment and educational considerations
	4.4. Study design and limitations

	5. Results and Analysis
	5.1. Number of teams
	5.2. Source code LOC (Lines of Code)
	5.3. Number of screens and screen transitions
	5.4. Number of models and user stories
	5.5. Course evaluation survey

	6. Discussion
	6.1. The impact of a modern ecosystem on development outcomes
	6.2. The Role of the Toolchain in the Student Learning Experience
	6.3. Depth, breadth, and the evolving role of fundamental knowledge
	6.4. Implications for curriculum design

	7. Conclusion

