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Dynamics and Bifurcation for One Non-linear System
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Abstract

In this paper, we observed the ordinary differential equation (ODE) system and determined the equilibrium points.
To characterize them, we used the existing theory developed to visualize the behavior of the system. We describe the
bifurcation that appears, which is characteristic of higher-dimensional systems, that is when a fixed point loses its
stability without colliding with other points. Although it is difficult to determine the whole series of bifurcations that
lead to chaos, we can say that it is a common opinion that it is precisely the Hopf bifurcation that leads to chaos when
it comes to situations that occur in applications. Here, subcritical and supercritical bifurcation occurs, and we can say
that subcritical bifurcation represents a much more dramatic situation and is potentially more dangerous than
supercritical bifurcation, technically speaking. Namely, bifurcations or trajectories jump to a distant attractor, which can
be a fixed point, limit cycle, infinity, or in spaces with three or more dimensions, a foreign attractor.
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1. Introduction { x=—-ax+y+y?

y=—px+u+4)y—xy+ -2y~ M

When analyzing a nonlinear system of ordinary
differential equations, it is very important to examine the
conditions under which bifurcations occur. We deal with
the analysis of the Hopf bifurcation. It arises in the case

Where a is a positive real parameter and p a real
parameter. We want to examine the dynamics of the
mentioned system and point out the important phenomena
that will appear. We encounter the study of such systems
in the dynamics of nerve cells, aeroelastic shaking,
aerodynamic vibrations, and the occurrence of instability
in fluid flow. A special motivation for studying this kind
of system is that Hopf bifurcation appears in it, although
it is only of the second order, usually, this phenomenon

when the limit cycle or periodic solution, which surrounds
the equilibrium, appears or disappears with a change in
the value of the parameter. Often, to examine the Hopf
bifurcation, the starting system is converted to polar
coordinates. It is not always easy, but it is important to
establish whether it is a supercritical or a subcritical Hopf
bifurcation. If a stable limit cycle surrounds an unstable
equilibrium point, then the bifurcation is called a
supercritical Hopf bifurcation, and conversely, if an The investigation of this system is interesting from the
unstable limit cycle surrounds a stable equilibrium point, ~ point of view of the appearance of the Hopf bifurcation.
then the bifurcation is called a subcritical Hopf The appearance of the Hopf bifurcation represents the
bifurcation. It is impossible in the general case to  basic beginning of the quasi-periodic path to chaos, when

determine Whether a Supercritical or Subcritical Hopf the Spiral IlOde beCOIneS unstable, and passes into the hmlt
bifurcation occurs by linearization alone. cycle through the Hopf bifurcation, after which chaos

appears. The study of bifurcation can be found in papers
[1]-[4], in addition to bifurcations associated with
continuous systems, this phenomenon also occurs in

occurs in higher-order systems.

In this paper, we investigate the behavior of a system
of differential equations that has the form
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discrete systems, where the common name is Neimark—
Sacker bifurcation, an example of such bifurcations is in

papers [5]-[7].

The application of the theory of nonlinear dynamics in
activity modeling is of great importance because it
provides a clear formalism and provides the possibility for
recognition and classification of universal characteristics
of the observed systems. In this paper, we use the theory
developed in paper [8], [9], [10], and [11]. The study and
significance of the ordinary differential equation (ODE)
system were in the works [12]-[17] and the discrete
system was in the works [5]-[7].

2. Analysis of System Dynamics

To characterize the observed system (1), let's
determine the equilibrium points. We get them by solving
equations

—ax+y+y?=0,

i+ (et )y — xy + (- 2y = 0. @

Theorem 1. The solutions of the system (2) are points
0(0,0), A(ﬁ(ﬁ(—z )P+ p(-1+p+
JE2+ 02 + (1 + w2 —2a(—5+ w2 + u)) +

a (2 (5 +

V@ 2+ 07+ 1+ P2 - 2a(-5+ W2 +R) -

u(=5+2u+

Va2 (=2 + w2 + (-1 +w? - 2a(-5+ W2 + u)))),
sCl+a(=2+m—p-

VA —a(=2+p) + W2 +4(—pu + a4 + w))),

B(i <a2(—2 F02+ (-1 +Wp+a(10+ G-

2Wp) —

Za\/(l —a(=2+wW+ w2 +4(-p+a@d+p) -

u\/(l —a(=2+wW+wWr+4(—u+al+p)+

a,u\/(l —a(=2+p) +u?+ 4(—;1 +a(4 +,u))),%(—1 +

a(=2+pw)—p+
VA —a(=2+w + w2 +4(—p + a4 + ).

These points are equilibrium points for system (1).

Proof: From the second equation of system (2) we can
_ 2 2

find x=4yzyy++w. Inserting into the first equation in

(2) we find that y((1 + y)(y + ) —a(d +y(=2 + u) +

y)) = 0. From the above, we obtain the statement of the

theorem.

To apply the theory developed for the study of such
systems, let's write the observed system in matrix form
‘e < —ax +y +y? )
—px + (u+ 4y —xy + (n-2)y*)
The Jacobian matrix associated with this mapping is
given in the form

1+ 2y )

—a
Df:(—y—u 4—x+2y(=2+p) +u )

Let's calculate the mapping value of (3) at the point
0(0,0).

—a 1
b0y = (—u 4+ u)'
The value of the trace and the determinant is
tr (Df(O)) =4 —a+ pand det (Df(O)) = —da+pu—
ap. From this, we see that it is det (Df(O)) < 0 for
a(4+ p) > pora = 1.1Itis similar det ( Df(O)) > 0 for
a(4 + @) < pand a # 1. By direct calculation, we find
2
1 1
that det (D;(0)) -3 (tr (Df(O))> =2(-16—8a -
a? — 4p — 2apu — u?) < 0.

From all of the above, we can conclude that the
following theorem is valid:

Theorem 2. The character of point 0(0,0) is:

Saddle point for a(4 + u) > pora = 1.
Nodal source fora < 1 and a(4 + u) < p.
Nodal sink fora > 1 and a(4 + p) < p.
Center for y = 4 — a.

AR

Comb for u = i—aa and a # 1.

Let's examine the behavior of point A. In this case we find
that it is

det(Dy(4)) =2 (1+a?(-2 + p)? +
Va2 (=2 + w2+ (-1 +p)? —2a(-5+ w2 + ) +

p(=2+p+

V& (=24 02 + (-1+1)? = 2a(=5 + W2 + ) +
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a(2(10 +

V(=2 +1)? + (-1 +1)? = 2a(=5+ )2 + ) -
u(—=6+2u+

Va2 (=2+ )% + (-1 + w)? = 2a(=5 +1)2 + 1))
er (Dr (@) = 55 (1 + @@+ (=4 + w0 -
a(=2+ ) (1 +

V@247 + 1+ 7 - 2a(-5+ 0 +p) -
u(p+

V2407 + 1+ w7 —2a(-5+ @ + 1) )

and

We can see that the obtained expressions are quite
large and not simple for some calculations. However, we

can notice that it is always det (Df(A)) > 0. For u <0,
we have that is always tr (Df(A)) > 0. Based on this
consideration, we conclude that the theorem is valid.

Theorem 3. The equilibrium point 4 is the source for
u<0,and g > 0 and tr (Df(A)) > 0. For u > 0 and

tr (Df (A)) < 0, this point is the sink.

Let's complete our research for point B as well. It's
worth it

det(Dy(B)) =5 (1 + a?(~2 + u)? -

Ja2(=2 + w2+ (-1 +p)? —2a(-5+ ) (2 + ) +
p(=2+up-—

V(=2 +1)? + (-1 +1)? - 2a(=5+ )2 + ) +
a(20 —

2Ja2(—2+ W2 + (-1 +p? —2a(-5+ w2 +w) +
(6 —2u+

V(2 +1)? + (-1 +w)? = 2a(=5+ )2 + 1))
and  tr(D(B)) == (aZ(z b(—d+ 0w +a(=2 +
D) (—1 +

Va2 (24107 + 1+ = 205+ 02 + W) +
u (1 —u+

V2407 + 1+ w7 —2a(-5+ 2 + 1) )

By direct checking, we can see that it will be valid
det (Df(B)) <0 for a4+u)<u and a=#+l,
det (Df(B)) > 0fora(4 + u) > uand a = 1. Using the

given facts, we can say that the theorem holds.

Theorem 4. Fora(4 +p) <pand a #1
equilibrium point B is the saddle point. For a(4 + u) >

uand a = 1, and in addition to that tr (Df (B)) >0
(tr (Df (B)) < 0) this pint is a source (sink).

To better understand and describe the behavior of the
observed system, we perform a simulation for some
parameter values. From the graphic representations in
Figure 1 and Figure 2, we can see that the essential values
of the parameters of our system are a = 1 and p = 1.

0.0

05

15

Figure 1. The behavior of the solution fora =2 p = 0.5.

Figure 2. The behavior of the solution fora =1 p = 1.

We notice that orbits appear for these parameter
values, i.e. that depending on the starting point, some
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solutions go in and some out. This means that orbits and
some bifurcations can appear here. Let's enter the
mentioned values into the equilibrium points. We get now
the following values A; (12, —2), B;(2,1). We pay special
attention to point B; because, according to the
simulations, there is a possible occurrence of bifurcations,

which we want to investigate.

If we determine the eigenvalues of D¢ (B;) we have the
following equation:

(=3 +3u++/—11 - 18y + 9u?)
5 :
We can state that the eigenvalues are conjugately
complex if u € (% 3- 2\/3),%(3 + 2\/3)) A well-

known algorithm for examining the Hof bifurcation is

11,2 =

given:

L a(ue) =0,B(uo) = w # 0,

a
sgn(@) = sgn 372 (xq,yo) for = o,

d a(w)
a—:=d¢0, for = py,
1 [93f, a%f, a3g
f = 16|52 G0, 70) + 5% G0, Y0) + G2 (o ¥0) | +

1 |o?f, a%f, a%f,
o [ﬁ (%0, ¥0) <# (x0,¥0) + # (x0, }’0)) -

d%g
ayzu (x0,¥0) | —

azgp. azgu
9x3y (%0, ¥0) <W (x0,¥0) +

2%f, d%g a%f, da%g
# (x0,¥Y0) qu (x0,¥0) + # (%0, Y0) # (x0,¥0)
for u = py,

2. f#0.

We used labels f, and g, for system equations, i.e. the
observed system is of the form:
{56 = f u ),
Y =gu(xy).
When we apply the mentioned algorithm, in our case
we have the following equation:

3u—3 11+18[.l—9”2
a(p) =—— W = > .
Calculating directly we find (1) = 0, f(1) = /5.
% (2,1) = =2, well it is finally w = —/5,

=3 _ 3=
d—2¢0andf— NG

From the coefficients obtained in this way, we
conclude that the conditions for the existence of Hopf

fory=1,f=giﬁ¢o.

bifurcation are fulfilled. According to [14] there is a
bifurcation of the unique curve of periodic solutions from
a fixed point into the region u < 2, because fd < 0 and
into the region y > 2, because fd > 0. Periodic orbits are
asymptotically stable for f < 0, and unstable for f > 0.
We can conclude that we have supercritical bifurcation
and subcritical bifurcation. We can formulate all this in
the following theorem.

Theorem 5. If u < 2 then
a) a limit cycle is asymptotically stable,
b) Hopf bifurcation is supercritical.
If u > 2 then
¢) alimit cycle is unstable,
d) Hopf bifurcation is subcritical.

Figure 3 presents the occurrence of bifurcation and
Figure 4 presents the bifurcation diagram.

Figure 4. Bifurcation diagram.
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3. Conclusion

In this paper, we see that Hopf bifurcation occurs even
with a system of quadratic equations with two parameters,
where one of the parameters affects its occurrence. By
varying this parameter, the bifurcation changes from
supercritical to subcritical. Studying the occurrence of
bifurcation is interesting but also complex, depending on
the number of parameters that appear. In our research, we
described the local dynamics of the considered system,
using simulations, and observed that bifurcation is
possible, which we then proved and presented in Figure 3
and Figure 4. From the above, we can see that our system
has complex and interesting dynamics.

In future research, it would be desirable to examine
whether equilibrium points with negative coordinates are
also applicable in some areas. In addition, these results
provide theoretical foundations on which research related
to some diseases can be based.
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