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Abstract 

In this paper, we observed the ordinary differential equation (ODE) system and determined the equilibrium points. 
To characterize them, we used the existing theory developed to visualize the behavior of the system. We describe the 
bifurcation that appears, which is characteristic of higher-dimensional systems, that is when a fixed point loses its 
stability without colliding with other points. Although it is difficult to determine the whole series of bifurcations that 
lead to chaos, we can say that it is a common opinion that it is precisely the Hopf bifurcation that leads to chaos when 
it comes to situations that occur in applications. Here, subcritical and supercritical bifurcation occurs, and we can say 
that subcritical bifurcation represents a much more dramatic situation and is potentially more dangerous than 
supercritical bifurcation, technically speaking. Namely, bifurcations or trajectories jump to a distant attractor, which can 
be a fixed point, limit cycle, infinity, or in spaces with three or more dimensions, a foreign attractor. 
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1. Introduction 

When analyzing a nonlinear system of ordinary 
differential equations, it is very important to examine the 
conditions under which bifurcations occur. We deal with 
the analysis of the Hopf bifurcation. It arises in the case 
when the limit cycle or periodic solution, which surrounds 
the equilibrium, appears or disappears with a change in 
the value of the parameter. Often, to examine the Hopf 
bifurcation, the starting system is converted to polar 
coordinates. It is not always easy, but it is important to 
establish whether it is a supercritical or a subcritical Hopf 
bifurcation. If a stable limit cycle surrounds an unstable 
equilibrium point, then the bifurcation is called a 
supercritical Hopf bifurcation, and conversely, if an 
unstable limit cycle surrounds a stable equilibrium point, 
then the bifurcation is called a subcritical Hopf 
bifurcation. It is impossible in the general case to 
determine whether a supercritical or subcritical Hopf 
bifurcation occurs by linearization alone. 

In this paper, we investigate the behavior of a system 
of differential equations that has the form 

 

�̇� = −𝑎𝑥 + 𝑦 + 𝑦 ,

�̇� = −𝜇𝑥 + (𝜇 + 4)𝑦 − 𝑥𝑦 + (𝜇 − 2)𝑦 .
          (1) 

 

Where 𝑎 is a positive real parameter and 𝜇 a real 
parameter.  We want to examine the dynamics of the 
mentioned system and point out the important phenomena 
that will appear. We encounter the study of such systems 
in the dynamics of nerve cells, aeroelastic shaking, 
aerodynamic vibrations, and the occurrence of instability 
in fluid flow. A special motivation for studying this kind 
of system is that Hopf bifurcation appears in it, although 
it is only of the second order, usually, this phenomenon 
occurs in higher-order systems. 

The investigation of this system is interesting from the 
point of view of the appearance of the Hopf bifurcation. 
The appearance of the Hopf bifurcation represents the 
basic beginning of the quasi-periodic path to chaos, when 
the spiral node becomes unstable, and passes into the limit 
cycle through the Hopf bifurcation, after which chaos 
appears. The study of bifurcation can be found in papers 
[1]-[4], in addition to bifurcations associated with 
continuous systems, this phenomenon also occurs in 
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discrete systems, where the common name is Neimark–
Sacker bifurcation, an example of such bifurcations is in 
papers [5]-[7].  

The application of the theory of nonlinear dynamics in 
activity modeling is of great importance because it 
provides a clear formalism and provides the possibility for 
recognition and classification of universal characteristics 
of the observed systems. In this paper, we use the theory 
developed in paper [8], [9], [10], and [11]. The study and 
significance of the ordinary differential equation (ODE) 
system were in the works [12]-[17] and the discrete 
system was in the works [5]-[7]. 

 

2. Analysis of system dynamics 

To characterize the observed system (1), let's 
determine the equilibrium points. We get them by solving 
equations 

−𝑎𝑥 + 𝑦 + 𝑦 = 0,

−𝜇𝑥 + (𝜇 + 4)𝑦 − 𝑥𝑦 + (𝜇 − 2)𝑦 = 0.
               (2) 

 

Theorem 1. The solutions of the system (2) are points 

𝑂(0,0), 𝐴( 𝑎 (−2 + 𝜇) + 𝜇 −1 + 𝜇 +

𝑎 (−2 + 𝜇) + (−1 + 𝜇) − 2𝑎(−5 + 𝜇)(2 + 𝜇) +

𝑎 2 5 +

𝑎 (−2 + 𝜇) + (−1 + 𝜇) − 2𝑎(−5 + 𝜇)(2 + 𝜇) −

𝜇 −5 + 2𝜇 +

𝑎 (−2 + 𝜇) + (−1 + 𝜇) − 2𝑎(−5 + 𝜇)(2 + 𝜇) , 

(−1 + 𝑎(−2 + 𝜇) − 𝜇 −

(1 − 𝑎(−2 + 𝜇) + 𝜇) + 4(−𝜇 + 𝑎(4 + 𝜇)))), 

𝐵( 𝑎 (−2 + 𝜇) + (−1 + 𝜇)𝜇 + 𝑎(10 + (5 −

2𝜇)𝜇) −

2𝑎 (1 − 𝑎(−2 + 𝜇) + 𝜇) + 4 −𝜇 + 𝑎(4 + 𝜇) −

𝜇 (1 − 𝑎(−2 + 𝜇) + 𝜇) + 4 −𝜇 + 𝑎(4 + 𝜇) +

𝑎𝜇 (1 − 𝑎(−2 + 𝜇) + 𝜇) + 4 −𝜇 + 𝑎(4 + 𝜇) , (−1 +

𝑎(−2 + 𝜇) − 𝜇 +

(1 − 𝑎(−2 + 𝜇) + 𝜇) + 4(−𝜇 + 𝑎(4 + 𝜇)))).  

 

These points are equilibrium points for system (1).  
 
Proof: From the second equation of system (2) we can 

find 𝑥= . Inserting into the first equation in 

(2) we find that 𝑦 (1 + 𝑦)(𝑦 + 𝜇) − 𝑎(4 + 𝑦(−2 + 𝜇) +

𝜇) = 0. From the above, we obtain the statement of the 
theorem. 

To apply the theory developed for the study of such 
systems, let's write the observed system in matrix form 

�̇� =
−𝑎𝑥 + 𝑦 + 𝑦

−𝜇𝑥 + (𝜇 + 4)𝑦 − 𝑥𝑦 + (𝜇 − 2)𝑦
. 

The Jacobian matrix associated with this mapping is 
given in the form 

𝐷 =
−𝑎 1 + 2𝑦

−𝑦 − 𝜇 4 − 𝑥 + 2𝑦(−2 + 𝜇) + 𝜇
.       (3) 

Let's calculate the mapping value of (3) at the point 
𝑂(0,0).  

𝐷 (𝑂) =
−𝑎 1
−𝜇 4 + 𝜇

. 

 
The value of the trace and the determinant is 

𝑡𝑟 𝐷 (𝑂) = 4 − 𝑎 + 𝜇 and det 𝐷 (𝑂) = −4𝑎 + 𝜇 −

𝑎𝜇.  From this, we see that it is det 𝐷 (𝑂) < 0 for 

𝑎(4 + 𝜇) > 𝜇 or 𝑎 = 1. It is similar det  𝐷 (𝑂) > 0 for 

𝑎(4 + 𝜇) < 𝜇 𝑎𝑛𝑑 𝑎 ≠ 1. By direct calculation, we find 

that  det 𝐷 (𝑂) − 𝑡𝑟 𝐷 (𝑂) = (−16 − 8𝑎 −

𝑎 − 4𝜇 − 2𝑎𝜇 − 𝜇 ) < 0.  
 

From all of the above, we can conclude that the 
following theorem is valid: 

Theorem 2. The character of point 𝑂(0,0) is: 

1. Saddle point for 𝑎(4 + 𝜇) > 𝜇 or 𝑎 = 1. 
2. Nodal source for 𝑎 < 1 𝑎𝑛𝑑 𝑎(4 + 𝜇) < 𝜇. 
3. Nodal sink for 𝑎 > 1 𝑎𝑛𝑑 𝑎(4 + 𝜇) < 𝜇.  
4. Center for 𝜇 = 4 − 𝑎. 

5. Comb for 𝜇 =  𝑎𝑛𝑑 𝑎 ≠ 1. 

Let's examine the behavior of point 𝐴. In this case we find 
that it is 
 

det 𝐷 (𝐴) = (1 + 𝑎 (−2 + 𝜇) +

𝑎 (−2 + 𝜇) + (−1 + 𝜇) − 2𝑎(−5 + 𝜇)(2 + 𝜇) +
𝜇(−2 + 𝜇 +

𝑎 (−2 + 𝜇) + (−1 + 𝜇) − 2𝑎(−5 + 𝜇)(2 + 𝜇)) +
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𝑎(2(10 +

𝑎 (−2 + 𝜇) + (−1 + 𝜇) − 2𝑎(−5 + 𝜇)(2 + 𝜇)) −
𝜇(−6 + 2𝜇 +

𝑎 (−2 + 𝜇) + (−1 + 𝜇) − 2𝑎(−5 + 𝜇)(2 + 𝜇)))) 

and 𝑡𝑟 𝐷 (𝐴) = 𝜇 + 𝑎 (2 + (−4 + 𝜇)𝜇) −

𝑎(−2 + 𝜇) 1 +

𝑎 (−2 + 𝜇) + (−1 + 𝜇) − 2𝑎(−5 + 𝜇)(2 + 𝜇) −

𝜇 𝜇 +

𝑎 (−2 + 𝜇) + (−1 + 𝜇) − 2𝑎(−5 + 𝜇)(2 + 𝜇) . 

 

We can see that the obtained expressions are quite 
large and not simple for some calculations. However, we 

can notice that it is always det 𝐷 (𝐴) > 0. For 𝜇 < 0, 

we have that is always 𝑡𝑟 𝐷 (𝐴) > 0.  Based on this 

consideration, we conclude that the theorem is valid. 

Theorem 3. The equilibrium point 𝐴 is the source for 

𝜇 < 0, and 𝜇 > 0 and 𝑡𝑟 𝐷 (𝐴) > 0.  For 𝜇 > 0 and 

𝑡𝑟 𝐷 (𝐴) < 0, this point is the sink.  

Let's complete our research for point 𝐵 as well. It's 
worth it 

det 𝐷 (𝐵) = (1 + 𝑎 (−2 + 𝜇) −

𝑎 (−2 + 𝜇) + (−1 + 𝜇) − 2𝑎(−5 + 𝜇)(2 + 𝜇) +
𝜇(−2 + 𝜇 −

𝑎 (−2 + 𝜇) + (−1 + 𝜇) − 2𝑎(−5 + 𝜇)(2 + 𝜇)) +
𝑎(20 −

2 𝑎 (−2 + 𝜇) + (−1 + 𝜇) − 2𝑎(−5 + 𝜇)(2 + 𝜇) +
𝜇(6 − 2𝜇 +

𝑎 (−2 + 𝜇) + (−1 + 𝜇) − 2𝑎(−5 + 𝜇)(2 + 𝜇)))) 

and  𝑡𝑟 𝐷 (𝐵) = 𝑎 (2 + (−4 + 𝜇)𝜇) + 𝑎(−2 +

𝜇) −1 +

𝑎 (−2 + 𝜇) + (−1 + 𝜇) − 2𝑎(−5 + 𝜇)(2 + 𝜇) +

𝜇 1 − 𝜇 +

𝑎 (−2 + 𝜇) + (−1 + 𝜇) − 2𝑎(−5 + 𝜇)(2 + 𝜇) .  

 

By direct checking, we can see that it will be valid 

det 𝐷 (𝐵) < 0 for 𝑎(4 + 𝜇) < 𝜇 and  𝑎 ≠ 1, 

det 𝐷 (𝐵) > 0 for 𝑎(4 + 𝜇) > 𝜇 and  𝑎 = 1. Using the 

given facts, we can say that the theorem holds. 

Theorem 4. For 𝑎(4 + 𝜇) < 𝜇 and  𝑎 ≠ 1 
equilibrium point 𝐵 is the saddle point. For 𝑎(4 + 𝜇) >

𝜇 and  𝑎 = 1, and in addition to that 𝑡𝑟 𝐷 (𝐵) > 0 

(𝑡𝑟 𝐷 (𝐵) < 0) this pint is a source (sink). 

To better understand and describe the behavior of the 
observed system, we perform a simulation for some 
parameter values. From the graphic representations in 
Figure 1 and Figure 2, we can see that the essential values 
of the parameters of our system are 𝑎 = 1 and µ = 1. 

 

 

Figure 1. The behavior of the solution for 𝒂 = 𝟐 µ = 𝟎. 𝟓.  

 

 

Figure 2. The behavior of the solution for 𝑎 = 1 µ = 1. 

 

We notice that orbits appear for these parameter 
values, i.e. that depending on the starting point, some 
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solutions go in and some out. This means that orbits and 
some bifurcations can appear here. Let's enter the 
mentioned values into the equilibrium points. We get now 
the following values 𝐴 (12, −2), B (2,1). We pay special 
attention to point B  because, according to the 
simulations, there is a possible occurrence of bifurcations, 
which we want to investigate.  

If we determine the eigenvalues of 𝐷 (𝐵 ) we have the 

following equation: 

𝜆 , =
(−3 + 3𝜇 ± −11 − 18𝜇 + 9𝜇 )

2
. 

We can state that the eigenvalues are conjugately 

complex if 𝜇 ∈ (3 − 2√5), (3 + 2√5) . A well-

known algorithm for examining the Hof bifurcation is 
given: 

1. 𝛼(𝜇 ) = 0, 𝛽(𝜇 ) = 𝜔 ≠ 0, 

 𝑠𝑔𝑛(𝜔) = 𝑠𝑔𝑛
 

 
(𝑥 , 𝑦 ) for µ = 𝜇 , 

 ( )

 
= 𝑑 ≠ 0,  for µ = 𝜇 , 

𝑓 = (𝑥 , 𝑦 ) + (𝑥 , 𝑦 ) + (𝑥 , 𝑦 ) +

(𝑥 , 𝑦 ) (𝑥 , 𝑦 ) + (𝑥 , 𝑦 ) −

(𝑥 , 𝑦 ) (𝑥 , 𝑦 ) + (𝑥 , 𝑦 ) −

(𝑥 , 𝑦 ) (𝑥 , 𝑦 ) + (𝑥 , 𝑦 ) (𝑥 , 𝑦 )   

for µ = 𝜇 ,  
2. 𝑓 ≠ 0. 

 
We used labels 𝑓  and 𝑔  for system equations, i.e. the 

observed system is of the form: 
�̇� = 𝑓 (𝑥, 𝑦),

�̇� = 𝑔 (𝑥, 𝑦).
 

      When we apply the mentioned algorithm, in our case 
we have the following equation: 

𝛼(𝜇) =
3𝜇 − 3

2
, 𝛽(𝜇) =

11 + 18𝜇 − 9𝜇

2
. 

Calculating directly we find 𝛼(1) = 0, 𝛽(1) = √5. 

 

 
(2,1) = −2, well it is finally 𝜔 = −√5,  

𝑑 = ≠ 0 and 𝑓 =
( )

√
, for 𝜇 = 1, 𝑓 =

√
≠ 0.  

From the coefficients obtained in this way, we 
conclude that the conditions for the existence of Hopf 

bifurcation are fulfilled. According to [14] there is a 
bifurcation of the unique curve of periodic solutions from 
a fixed point into the region 𝜇 < 2, because 𝑓𝑑 < 0 and 
into the region 𝜇 > 2, because 𝑓𝑑 > 0. Periodic orbits are 
asymptotically stable for 𝑓 <  0, and unstable for 𝑓 >  0. 
We can conclude that we have supercritical bifurcation 
and subcritical bifurcation. We can formulate all this in 
the following theorem. 

Theorem 5. If 𝜇 < 2 then  
a) a limit cycle is asymptotically stable, 
b) Hopf bifurcation is supercritical. 

 If 𝜇 > 2 then  
c) a limit cycle is unstable, 
d) Hopf bifurcation is subcritical. 

 
Figure 3 presents the occurrence of bifurcation and 
Figure 4 presents the bifurcation diagram. 
 

 

Figure 3. Occurrence of bifurcation for µ = 𝟏. 

 
 

 

Figure 4. Bifurcation diagram. 
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3. Conclusion 

In this paper, we see that Hopf bifurcation occurs even 
with a system of quadratic equations with two parameters, 
where one of the parameters affects its occurrence. By 
varying this parameter, the bifurcation changes from 
supercritical to subcritical. Studying the occurrence of 
bifurcation is interesting but also complex, depending on 
the number of parameters that appear. In our research, we 
described the local dynamics of the considered system, 
using simulations, and observed that bifurcation is 
possible, which we then proved and presented in Figure 3 
and Figure 4. From the above, we can see that our system 
has complex and interesting dynamics.  

In some future research, it would be desirable to 
examine whether equilibrium points with negative 
coordinates are also applicable in some areas. In addition, 
these results provide theoretical foundations on which 
research related to some diseases can be based. 
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