
Science, Engineering and Technology  Vol. 3, No. 2, pp. 97-105 

www.setjournal.com  https://doi.org/10.54327/set2023/v3.i2.73 

 
Corresponding author: Hayatou Oumarou (oumarou.hayatou@univ-maroua.cm)  
Received: 4 March 2023; Revised: 28 May 2023; Accepted: 2 June 2023; Published: 30 June 2023 
© 2023 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License 

 

 97 

A Source-Code Maintainability Evaluation Model for Software Products  

Hayatou Oumarou, Kolyang 

 Department of Computer Science, Higher Teachers’ Training College, The University of Maroua, PO Box 55 Maroua, Cameroon 

 

Abstract 

The maintainability index (MI) has been proposed to calculate a single number which expresses the maintainability 
of a system. This article presents a model for evaluating the maintainability of software products. The model improves 
the shortcomings observed in the maintainability assessment approaches in the quality assessment models SQuaRE 
(ISO25000), ISO 9126, Squale and the FCM standard. Its main innovation is to take into account the importance of 
entities in the system when calculating the maintainability score. This implies that the same type of defect will have 
a different score depending on the entity presenting it. Seven experts with several years of experience evaluated the 
model. They confirmed the effectiveness and usability of the model. Then, we compared our model with the Squale 
maintainability index and the classical maintainability index. The results show no correlation between these models. 
The implications are that each method gives a slightly different view of maintainability. 
 

Keywords: maintainability, software quality, metric, evaluation model. 

 

1. Introduction 

Nowadays, organizations are more and more 
concerned about the quality of the software they use. The 
numerous failures and errors, the evolution of the software 
to meet future expectations, and the multitude of existing 
hardware and software platforms make them conscious of 
being concerned about the software quality. Therefore, it 
is essential to assess the quality of their software. For 
example, on June 15, 2022, a software failure obliged the 
closure of Swiss airspace from 04:00 until 08:30. 
Thousands of passengers were affected, and hundreds of 
flights were canceled or diverted to neighboring airports 
causing huge losses [1]. In such cases, urgent maintenance 
is necessary. Studies have shown that 50-90% of software 
effort goes into maintaining systems. Maintainability 
strongly influences maintenance teams' productivity [2]. 
The reasons for this very high cost are multiple and often 
misunderstood. Most of the software development time is 
devoted to the maintenance phase. Improving an 
application's maintainability quality positively influences 
the latter's cost [2]. Thus, one of the main objectives of 
software engineers is the development of easily 

maintainable software. The maintainability of software 
influences its overall quality. With maintainable software, 
it is easy to modify parts, solve stakeholder problems very 
quickly and manage the software efficiently [3]. 

To control the software quality, measuring and 
evaluating its quality characteristics is essential. The 
maintenance assessment is usually part of the quality 
models that assess software quality. This evaluation uses 
measurements, generally mathematical models, 
considering the expected aspects. The maintainability is 
an essential part to software quality. A quality model 
relates the external quality of software to its internal 
quality. Quality models combine the values of metrics and 
raw data in a well-defined way to ease quality analysis. 
Researchers have proposed measures, such as 
maintainability index and quality models. For example, 
McCall's FCM (factor, criterion and metric) model [4], the 
Boehm model, the Dromey model, the ISO 9126 model 
[5], the SQuaRE model [6], the Squale model [7], the 
Squash model [8]. Most of these models offer guidelines 
for evaluating the quality of a software product but often 
ignore certain essential aspects to measure. Assessing the 
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quality of software from metrics is not always easy. A 
metric is defined and used for specific software 
components (i.e., the SLOC (Source Line of Code) metric 
for a method or the DIT (Depth of Inheritance Tree) 
metric for class). Principles or rules to be measured 
usually call for using several metrics belonging to 
different ranges. Determining a score can involve solving 
two problems: 

- Compose metrics that are different from each other. 
- Aggregate the results to find an overall score for a 

criterion while retaining the information provided by 
each raw score. 

We cannot derive some measures from metrics, such 
as assessing documentation quality. Instead, human 
expertise is used to evaluate such features. 

Based on these observations, we propose a new model 
for measuring maintainability. To achieve this general 
objective, we formulate four specific research objectives: 
(1) Identify measurable maintainability characteristics of 
software; (2) find the appropriate metrics used to measure 
each characteristic; (3) define the mathematical formulas 
or algorithms to be used for the calculation of the scores; 
(4) validate and evaluate the formalized model by 
applying it to concrete case studies. 

The rest of the paper falls as follows: Section 2: State 
of the art. This section presents related works. Section 3: 
Proposed approach. This section describes the proposed 
maintainability model. It highlights the architecture, and 
the formulas used to calculate the scores in our model. 
Section 4: Empirical assessment. In this section, we 
validate the proposed model through case studies. Section 
5: Conclusion. 

 

2. State-of-the-art 

Researchers propose many software maintainability 
evaluation models. This paper focuses on the 
Maintainability Index (MI) and Squale Maintainability 
Index (SQI). There are several reasons for choosing these 
models. On the one hand, the Maintainability Index is a 
popular model proposed. Then the Squale model 
implements the ISO9126 standard into practice. Our 
model has its origins in the limits of these cited models. 
These approaches implemented by tools are based on 
metrics, so they assume a similar effort in collecting data. 

The idea of the Maintainability Index (MI) was first 
presented in 1992 by Oman and Heidegger [9]. They 
present a study on 60 measurements and aggregate some 
of them to evaluate the maintainability of software. They 
then proposed the maintainability index evaluated by the 
following formula: 

MI=171−5.2ln(HV)−0.23(CC)−16.2ln(LoC)+0.99(CMT) 

where 

- HV is the average Halstead volume per module, 
- CC is an average cyclomatic complexity per module, 
- LoC is the average lines of code per module and 
- CMT is an average of comment lines per module. 
 

Software specialist consider the maintainability index 
as controversial measure, despite its popularity. They 
criticized the unclear explanation of formula, the use of 
simple averages per file, the same formula till 1994, and 
ambiguous connection between the results and specific 
metrics in the code source. Several formulae are derived 
from MI and are still used in some popular code editors 
(e.g., Microsoft Visual Studio) [9]. 

The Squale quality model  [10], designed by Qualixo 
and Air-France KLM, comprises four layers, divided into 
two levels: (i) the conceptual level defining the main 
assessed principles of quality. It comprises factors and 
criteria. The technical level outlines basic rules and 
associated measures. Based on ISO 9126 and SQuaRE 
standards, the model incorporates seven factors according 
to empirical validations performed during the Squale and 
Squash research projects. For this model, the 
maintainability (which measures the ability of software to 
facilitate the location and correction of residual errors), is 
evaluated by the Squale Maintainability Index (SMI). 
This, deals with the correction of non-conformity defects 
about the specifications and not of defects resulting from 
a poor expression of needs. The following criteria: 
simplicity, interdependence, homogeneity and technical 
documentation. Authors use formulas to combine and 
aggregate source code metrics. They also use fuzzy logic 
formulas, allowing quality evaluation from 
measurements, not from metrics (raw data). The rating 
value is in the interval [0, 3]. Squale is well-structured, it 
clearly defines the quality factors. These factors are 
decomposed into simple and easily measurable properties. 
This model links the quality factors, and the metrics used 
for their evaluations. However, considering 
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maintainability as the ability to locate and correct errors 
without considering the criticality of the localization 
limits its evaluation. Similarly, the model does not 
consider the capacity for modification and evolution. 

SQuaRE model derived from Squale, is a family of 
standards which divides software quality characteristics 
into two quality models. Quality of use measures how 
well a product or system meets user requirements to 
achieve a specific goal; and product quality, measures 
product characteristics related to software properties. 
SQuaRE model has six main sections. Quality 
measurement is discussed in section three and section five 
looks at quality assessment. The SQuaRE standard is 
gradually replacing existing standards related to software 
quality, such as the ISO 9126 quality model. Al-Kilidar 
[11] and [12] revealed limitations of the ISO 9126 and 
SQuaRE (ISO25000) models for the 
quality/maintainability assessment of software products. 
Critics of this standard come from an experiment 
involving design in pairs. One severe criticism they give 
is that the 9126 standard does not provide guidance, 
heuristics, empirical rules, or any other way indicate how 
to use metrics, weight metrics, or even put them together 
simply. However, by analyzing this model, we realize that 
it also treats the defects of the same nature uniformly.  

Our main goal is to evaluate maintainability through a 
source code quality model. The proposed model combines 
aspects of the ISO 9126, SQuaRE, Squale and Squash 
models (see Table 1). We identified the model sub-factors 
and criteria based on the limitations of the mentioned 
models above. It aims to overcome certain limitations of 
these models. Separating the characteristics of 
maintainability and capacity for evolution, and not 
considering the criticality of fault location (a fault in a 
method used by several others differs from a fault in a less 
used method). Evolutionary capacity must be integrated 
with evolutive maintainability for a complete 
maintainability evaluation [13].  

By considering the modifiability sub-characteristic of 
the SQuaRE model as being equal to the sub-
characteristics fusion: changeability and stability of the 
ISO 9126 model [14], and considering that, the 
analyzability sub-characteristic of the ISO 9126 model, 
can be evaluated using the criteria: simplicity, technical 
documentation and interdependence of the Squash model. 

 

Table 1. Summary of the criteria for the “Maintainability” 

 Models 
 ISO

 9126 

S
Q

uaR
E

 
(ISO

 25000) 

S
quale 

Squash 

Criteria/sub-
characteristics 

Analyzability ×    
Changeability ×    
technical documentation   × × 
Homogeneity   × × 
interdependence   × × 
Editability  ×   
Modularity × ×   
Reusability × ×  × 
Simplicity   × × 
Stability ×    
Testability × ×   

 

3. Proposed Approach 

To evaluate the maintainability, we break it down into 
criteria, practices, and measures. Criteria defines the high 
level of abstraction of maintainability fields. These fields 
are changeability, technical documentation, 
interdependence, homogeneity, modelization, modularity, 
reusability, simplicity, stability, and testability. Each field 
is evaluated through practices or measures. Practices and 
measures are concrete and constitute the technical level of 
our model. We have five practices: Code practices, norms 
and standards practices, testing practices, documentation 
practices, and model practices. Measures are raw data 
collected from metrics or documents attached to the 
project. We break down these measures into five major 
groups: Code metrics (i.e., the number of lines of code), 
Test metrics (i.e., coverage rate), Model metrics (i.e., 
number of attributes, number of public fields), Coding 
conventions and Raw data. Raw data corresponds to the 
audits/assessments performed by experts on the 
application documentation. We assign each measurement 
to the entity it measures (class, method, variable, etc.) and 
aggregate them at the level of the project. Our approach 
can be summed up in four major steps: 

1) Calculation of the importance of an entity; 
2) Calculation of an entity's score for a practice; 
3) Aggregation of the entity's scores for a practice in 

order to get the score of the practice at the project 
level; 

4) Aggregation of the project practices weighted scores 
in order to get the maintainability score of the project. 
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3.1. Calculation of the importance of an entity 

To assess the maintainability of an entity, we use its 
importance. The importance of an entity is given by 
interactions it has with its environment. For this first 
version, we consider variables, methods and classes that 
we call candidate. The algorithm uses a mechanism 
similar to Google's PageRank. For the sake of readability, 
we present the algorithm in three parts. The main 
algorithm is Importance. It takes the list of candidates and 
returns a list of pairs (candidate, score) where score is the 
maintainability score of the candidate. It uses the 
Neighborhood and Score algorithms which calculate the 
importance and the score of the candidate. 

 
-------------------------------------------------------------------- 

Algorithm Importance: return a list of couples (candidate, 
score) 

INPUT: L, the list of candidates 
LOCAL: chg, the list of couple (l, c) where l in L and c the 
computed score  

For each l in L 
     Chg add (l, score (l)) 
End for 
For i=1 to threshold do 
  For each (l, c) in chg 
     (l,c)<-(l, (c +  SUM l’ In Neighbor (l)  score(l’)) /1+  

(c +  SUM l’ In Neighbor (l)  score(l’))) 
  End For 
End for 

     return Chg 
-------------------------------------------------------------------- 

Algorithm Neighbor: find neighbor of a candidate 

INPUT: l, a Candidate 
RETURN: N, a list of neighbor of l   

Case type of l:  
  Method : N <-  senders(l) +methodSends() 
  Class : N <- AllRefInside (l) + AllRefOutside (l) 
End Case 

     return N 
-------------------------------------------------------------------- 

Algorithm score: give a score to a candidate 

INPUT: l, a Candidate  
RETURN: c, the score for l 

  c <- # neighbor(l) / 1+ #neighbor (l) 
     return c 
-------------------------------------------------------------------- 

3.2. Calculation of an entity's score for a practice 
and aggregation 

The practice evaluation in our model follows the 
Squash scoring model requirements. They are derived 
from Squash procedures and formulas to compute the 
different practices scores (code practices, norms, and 
standards practices, test practices, model practices and 
documentary practices).  

We calculate scores in the interval [0; 3] like in Squash 
according to the following meanings: 

- between 0 and 1, the objective is not reached; 
- between 1 and 2, the minimum was reached, but 

with issues; 
- between 2 and 3, the objective is reached. 

 
Formula are specific to each practices. 
 

3.2.1. Code practices scores 

Code practices rely on metrics from code metrics. First, 
we transform each value computed metric in the interval 
[0; 3]. Each practice, therefore, gets a score per 
component, called an individual score. Coding practices 
are intimately linked to code smells [15]. They are: Self-
description, Spaghetti codes, Class cohesion, Copy paste, 
Swiss knife, Cyclic dependency, Level of abstraction and 
stability, Number of methods, Inheritance depth, Class 
specialization, Size of a method, Comment rate. 

For the criterion number of methods, for example, a 
study on 2080 Java applications taken randomly from 
SourceForge [16] found 938,779 methods defined in 
270,973 Java classes. On average, there are 3.5 methods 
per class (median equal to four) with a range of 1 to 1175 
methods per class. We apply the following scale for this 
criterion: 

𝑛𝑜𝑡𝑒 = ൜
3 𝑖𝑓 𝑛 < 5

3 − (𝑛 − 5) ∗ 0,25
 (1) 

Since the entities / candidates of the system do not 
have the same importance, we compute the weighted 
individual score:    

𝑛𝑜𝑡𝑒𝐶𝑜𝑑𝑒(𝑐) = 𝑛𝑜𝑡𝑒 ∗ 𝐼𝑚𝑝(𝑐) (2) 

where 𝐼𝑚𝑝(𝑐) is the importance of the entity 𝑐 given 
by Importance algorithm. 
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3.2.2. Norms and standards practices 

These practices determine compliance with the coding 
rules. The rules must be respected by the developers. The 
overall score is the function of the number of 
transgressions. 

There are three types of transgression: 

- Errors which are the most heavily weighted, we 
denote their weight W1; 

- Warnings which are moderately weighted, we 
denote their weight W2; 

- Slightly weighted information, we denote their 
weight W3. 

The weight applied to the transgressions reflects the 
transgression importance, and we also consider the Imp(c) 
importance of the entity where the transgression occurred. 
It corresponds to the transgression tolerance by several 
items (methods, classes, etc.). The formula used to 
calculate the practice grade is of the form: 

noteStandard=𝟑 ∗
𝟐

𝟑

𝑿𝟏∗𝑷𝒆శ𝑿𝟐∗𝑷𝒘శ𝑿𝟑∗𝑷𝒊

𝒎é𝒕𝒓𝒊𝒄  (3) 

Where: 

𝑃𝑖, 𝑃𝑒, 𝑃𝑤 = ෍ 𝐼𝑀𝑃 (𝐶𝑖)

௜

;  

𝑋1 = 𝑊1 ∗ 𝐸𝑟𝑟𝑜𝑟𝑠;   
𝑋2 = 𝑊2 ∗ 𝑊𝑎𝑟𝑛𝑖𝑛𝑔𝑠;  

𝑋3 = 𝑤3 ∗ #𝐼𝑛𝑓𝑜𝑠 
 

With W1 the weight applied to #Errors (the number of 
errors), W2 the weight applied to #Warnings (the number 
of warnings), W3 the weight applied to #Infos (the 
number of information), and metric the metric used in 
practice depending on the measured convention. The 
norms and standard practices are: Formatting, 
Programming, Naming convention, Configuration 
management, Tracing, Portability, Documentation, 
Safety. 

 

3.2.3.  Documentary practices 

These practices are based on experts' analysis because 
we cannot evaluate automatically them from metrics. This 
analysis aims to verify required documents for the project 
(documentation, user manual, etc.) and to determine their 
quality. Since these practices are based on human 
analysis, we do not compute the scores like those based 
on metrics. Therefore, they also have a lifetime limit and 

must be recomputed after a time. The documentary 
practices are: Documentation quality, Exception 
handling, Technical file: Safety, Layered slicing, 
Production file, Security implementation/definition 
compliance, Installation/un-installation manual, Machine 
independence, System-software independence, Common 
Communication, Common data. We evaluate these 
practices using the linguistic terms [3=excellent, 
2.5=good, 2=fair, 1.5=average, 0=insufficient]. We 
represent each evaluated characteristic according to a 
detailed model. Once the aggregate score is gotten, we 
convert it into a numerical value in the interval [0; 3] to 
be consistent with the model.  

 

3.2.4.  Testing practices 

These practices assess the quality of the tests 
performed. The base formulas are derived from [17]. Our 
formulas just take into account the importance of the 
entity evaluated according to the Algorithm Importance 
presented in section 3.1. These evaluations, depending on 
whether they are based on metrics or raw data, following 
the same logic as the evaluation of code practices. The 
considered test practices are: Test maturity, Anomaly 
management, Management of anomalies after tests, 
Version management, Load tests, Robustness tests, 
Coverage of unit tests, Coverage of integration tests, 
Configuration test coverage, Functional tests of non-
regression, System integration testing, 
Configuration/installation tests, Coverage of system 
integration tests, System data coverage, Success rate of 
unit tests, Success rate of integration tests, Load test 
covers, Coverage of non-regression tests, Coverage of 
robustness tests. 

 

3.2.5.  Model practices 

The model practices describe the rules and technical 
principles to be observed to get a good project model. 
Formulas are derived from [17]. Like testing practices, we 
evaluate model practices in the same ways as code 
practices or document practices, depending on whether 
they are based on metrics or raw data. However, some 
practices use basic metrics combination to compute their 
individual scores. We verify specific rules, such as those 
for accessing attributes, are respected for these practices. 
For each component, the metric verifies compliance with 
the rule, and the individual score assigned is  
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- 0 if the metric returns a negative result, i.e., there 
is at least one element that violates the rule; 

- 3 if the metric returns a positive result, i.e., all 
measured items follow the rule.  

 

The model practices are: Modeling diagram, 
Encapsulation, Pre-detection of anti-pattern, Model 
reasoning, Conformity between modeling and 
implementation. 

 

3.3. Aggregation of the entity's scores for a 
practice in order to obtain the score of the 
practice at the project level 

The second step, called aggregation, allows all the 
results to be grouped to give an overall practice score in 
the interval [0; 3]. This is a statistical-like operation 
performed using a weighted continuous function to 
calculate the overall project score for a practice. All 
formula are derive from [17]. 

We can distinguish two cases: 

- The score is computed at entities levels; we can 
aggregate to system level by the general formula 
for practice mark (for example code practice):  

𝑃𝑀ఒ = −𝑙𝑜𝑔ఒ ቆ
∑ 𝜆ି௘௡௧௜௧௬ே௢௧௘೙௡

ଵ

𝑛
ቇ (4) 

- The score is computed at system level, then 
formula for practice mark (for example Norm and 
standard Practice) is:  

𝑃𝑀ఒ = −𝑙𝑜𝑔ఒ(𝜆ି௡௢௧௘௉) (5) 

Where λ varies according to the applied weight; 
entityNoten relates to the individual note for component n 
and noteP the score for a Practice (example noteStandard 

above). The weights λ  {30,9,3} reflect the tolerance 
threshold of the model. We define them like this: 

 We apply a strong weight λ = 30 when the 
exception tolerance is extremely low. Here, a few 
bad individuals mark to get a bad overall mark 
(included in the interval [0; 1]); 

 We use an average weight λ = 9 when the 
exception tolerance is within the norm. The 
overall score falls in the interval [0; 1] only if 
there is an average number of low individual 
ratings; 

We apply a low weight λ=3 in the event of a 
considerable exception tolerance. The overall rating then 
only drops if there are many bad individual ratings. 

 

3.4. Aggregation of the project practices weighted 
scores in order to obtain the maintainability 
score of the project 

At this point we have the notes of each practice for 
the system. They are aggregated to obtain the system 
maintainability score using the following formula: 

𝑂𝑀𝐼ఒ = −𝑙𝑜𝑔ఒ ቆ
∑ 𝜆ି௉ெ೙௡

ଵ

𝑛
ቇ (6) 

 

4. Evaluation 

Before presenting the result of the evaluation, we 
present the dataset used for. We compare three 
maintainability indexes: the Maintainability index MI 
proposed by [9]; the Squale Maintainability Index SMI 
and Our Maintainability Index OMI. 

 

4.1. Building the dataset 

The dataset comprises 20 open-source Pharo system 
packages publicly available on GitHub 
https://github.com/pharo-project. We judge these projects 
ideal for our research because Pharo is an open source and 
immersive nature. In addition, we have access to the 
Squale model developers. Therefore, we operated on 20 
packages. For each package, we evaluate the 
maintainability according to the Squale model, the classic 
maintainability index, and our approach. Using the 
Maintainability Index to study source code and measure 
maintainability is a proven approach. Although criticized, 
it remains used by many. This shows the difficulty of 
unavoidable maintenance tasks. Table 2 summarizes the 
total number of entities in the dataset (packages, classes, 
and methods). We selected the final versions of the 
packages, considering the developers' domain of the 
projects (packages). Therefore, if the selected projects are 
from the same developers, they likely have the same 
development styles. A considerable number of entities 
must facilitate a comparison of approaches. To run the 
analysis on the same platform, we selected the Moose tool 
because it implements most of the building blocks. Our 
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work will therefore comprise putting together these 
blocks. Moose is an open source and immersive. It also 
allows one to do Meta programming and is easily 
extensible. 

The real problem is the made interpretation despite 
criticisms and shortcomings that must be overcome to 
make it a widely accepted and representative measure. We 
experimented on 20 real projects to perform statistical 
tests. We then submitted our results to 7 systems experts. 
The results got indicate our approach acceptance. 
 

Table 2. Entities in evaluation dataset 

Projects #line of code #class #methods 
Balloon 4040 27 584 
CodeImport 616 14 140 
Colors 2166 3 267 
Compression 3327 28 396 
Spruce 2229 55 534 
Geometry 2139 23 320 
Hermes 755 34 203 
Iceberg 5956 135 1492 
Issue Tracking 56 3 16 
Jobs 210 7 50 
Merlin 6108 81 821 
Monticello 6415 92 1368 
Ombu 1156 29 225 
PetitParser 2584 46 512 
Reflectivity 2324 55 523 
Renraku 1810 62 373 
Roassal2 95842 775 8533 
RoelTyper 1196 13 192 
Trachel 7128 125 1306 
UIManager 1009 9 235 
Total 147066 1616 18090 

 

4.2. Result and discussions 

In this section, we summarize the results of the data set 
evaluation concerning the three approaches. Figure 1 
presents the evaluations of maintainability of some 
packages by the three models. We change the scale of MI 
to fit 0-3, so that we can visually compare models.  

We chose seven experts who have in-depth knowledge 
of the 20 projects. Each expert has actually contributed to 
the maintenance of each of the projects through the history 
of contributions (commits). Each answered the following 
question: Which of the following measures best 
represents the maintainability of the system? To each 

expert, we proposed a graduated notation from 0 (low) to 
4 (high) with a step of 0.1. The work consisted in putting 
its appreciation of the maintainability score of the model 
of each project in this graduation. The appreciation for a 
model by an expert is therefore the average obtained from 
the 20 projects. For the sake of reading, we have 
multiplied these averages by 5 and validated it by the 
expert. Table 3 presents the responses. We find that our 
approach is the most accepted by experts. 

 
Figure 1. maintainability values per models. 

 

Table 3. Models evaluation by experts 

Expert MI SMI OMI 

Expert 1 6 8 10 

Expert 2 5 11 8 

Expert 3 7 7 10 

Expert 4 8 10 6 

Expert 5 4 12 8 

Expert 6 9 8 7 

Expert 7 4 4 16 

 43 60 65 

 

Table 4 shows the correlation between the 
measurements. As we can see, data shows no correlation 
between models. SMI-MI is the least comparable model, 
with a correlation=0.3134646. SMI and OMI 
(correlation=0.1540338) and MI-OMI 
(correlation=0.1312529) showed similar distributions of 
correlations, slightly in favor of OMI and MI, which have 
lower variance.  
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Table 4. Correlation between models. 

 OMI SMI MI 

OMI 1   

SMI 0.1540338 1  

MI 0.1312529 0.3134646 1 
 

To see if these differences are statistically significant, 
we run Wilcoxon signed rank tests and paired difference 
tests to assess mean rank differences for the correlations. 
The difference is statistically significant for the MI-SMI, 
SMI-OMI and MI-OMI pairs we have respectively: 

- t = 1.3891, df = 18, p-value = 0.1818, 95 percent 
confidence interval: -0.1523466 0.6624574 
sample estimates: cor =0.3111509,  

- t = 0.6614, df = 18, p-value = 0.5167 95 percent 
confidence interval: -0.3095896 0.5584864 
sample estimates: cor 0.1540338; 

- t = 0.56665, df = 18, p-value = 0.5779 95 percent 
confidence interval: -0.3294348 0.5430901 
sample estimates: cor 0.1323853.  

Given the low correlation between MI, SMI, and OMI, 
we have fewer similarities for the 20 projects chosen. SMI 
and OMI are the models that show a weaker trend 
correlation in the 20 projects considered. OMI is also the 
model that seems more stable compared to other models. 

 

4.3. Threats to validity 

Like any empirical evaluation, our experiment's results 
are subject to validity threats. We have identified the 
following notable threats: 

1. We performed the analysis on open source software 
systems, all implemented in Smalltalk. The absence of 
industrial/proprietary systems threatens the general 
validity of our conclusions. These studied systems may 
not fully represent a larger population of systems, either 
systems from another domain or written in another 
programming language. This threat is still problematic 
because there is little information about the essential 
properties for a representative system. Replication of the 
experiment with other systems must be performed. We 
strongly believe that our approach is independent of 
programming language and application domain. 

2. Judgments made on non-computable metrics by 
experts during our experimentation may introduce biases. 
However, we also believe that the experts who made these 

judgments are the systems developers, which makes our 
studies credible. 

3. Internal threats to validity are related to the approach 
implementation. For example, we carried the metrics 
calculation out based on Moose, a proven open-source 
tool. The loss of precision is caused by the composition 
and aggregation of metrics values. Therefore, it is still 
possible that our implementation of the approach contains 
errors that may affect the accuracy of our results. To 
counter this threat, we manually reviewed a subset of the 
results and found no apparent errors. 

 

5. Conclusion 

We have proposed a simple and effective approach for 
evaluating source code in order to identify and quantify 
its maintainability. It corrects certain limitations of the 
traditional models noted in the literature. The approach is 
functional, exhaustive and takes into account the 
importance of software entities. It can serve as a guide for 
directing human inquiry, but one must be aware of the 
limits of objective measurements. It is adaptable and 
objectively reflects the level of maintainability of 
software. The results obtained are easily interpretable. 

We compared our approach with SMI and MI on a set 
of 20 Smalltalk projects. We obtained a weak correlation 
between MI, SMI and OMI. Thus, each model presents 
the systems from different angles. The comparison of MI 
and SMI results is comparable to previous research. These 
differences presuppose that specialists adopting one or the 
other model might have different perceptions of the state 
of the project. Future work will extend the analysis to a 
larger scale and gain more explanatory insights, such as 
examining the relationships of models to common 
software quality metrics. Long-term development of the 
model to other factors, such as reliability and portability. 

 

Competing Interest Statement 

The authors declare no known competing financial 
interests or personal relationships that could have 
influenced the work reported in this paper. 

 

Data Availability 

No additional data or materials were utilized for the 
research described in the article. 



Science, Engineering and Technology  Vol. 3, No. 2, pp. 97-105 

 

 

105 

References 
 
[1]  Skyguide, "Swiss Airspace Closed Until Further Notice," 

Skyguide, 15 06 2022. [Online]. Available: Skyguide. 
https://www.skyguide.ch/media-centre/post/133592. 
[Accessed 22 09 2022]. 

[2]  C. Singh, N. Sharma and N. Kumar, "Analysis of software 
maintenance cost affecting factors and estimation 
models," International Journal of Scientific & 
Technology Research, vol. 8, no. 9, pp. 276-281, 2019.  

[3]  B. Seref and O. Tanriover, "Software code 
maintenability: a litterature review," International 
Journal of Software Engineering & Applications (IJSEA), 
pp. 69-87, 2016.  

[4]  J. A. McCall, P. K. Richards and G. F. Walters, "Factors 
in Software Quality," NTIS Springfield,, 1976.  

[5]  ISO/IEC, "ISO/IEC 9126 - Software engineering – 
Product quality.," ISO, 2001. 

[6]  ISO/IEC, "Software engineering Software product 
Quality Requirements and Evaluation (SQuaRE) Guide to 
SQuaRE," ISO Geneva, 2005.  

[7]  A. Bergel, S. Denier, S. Ducasse, J. Laval, F. Bellingard, 
P. Vaillergues, F. Balmas and K. Mordal-Manet, 
"SQUALE – Software QUALity Enhancement," RMoD 
Team, INRIA, Lille, France, 2009. 

[8]  K. Mordal-Manet, "Squash, un modèle d'évaluation des 
systèmes d'informations," Université Paris 8, 2012a.  

[9]  S. Peter, C. Stanislav and R. Bruno, "Comparing 
Maintainability Index, SIG Method, and SQALE 
forTechnical Debt Identification," Scientific programing, 
vol. 2020, no. Hindawi, p. 14, 2020.  

[10] K. Mordal-Manet, "Analyse et conception d'un modèle de 
qualité logiciel," Université Vincennes - Saint-Dénis - 
Paris 8, Paris, 2012b. 

[11] H. Al-Kilidar, K. Cox and B. Kitchenham, " The use and 
usefulness ofthe ISO/IEC 9126 quality standard," 
International Symposium onEmpirical Software 
Engineering (ISESE 2005), no. IEEE, p. 126–132., 2005. 

[12] H. I., K. T. and J. Visser, " A practical model for 
measuring maintainability.," international conference on 
the quality of information and communications 
technology , pp. 30-39, 2007.  

[13] A. Counet, Amélioration du processus de la maintenance 
du logiciel par un système informatisé d’aide à la 
décision, FUNDP, Namur: Institut d’Informatique, 2007. 

[14] M. K. Chawla and I. Chhabra., "SQMMA: Software 
Quality Model for Maintenability Analysis," Department 
of Computer Science & Applications, Panjab University, 
Chandigarh, India., pp. 1-9, 2015.  

[15] R. Verma, K. Kumar and H. K. Verma, "Code smell 
prioritization in object-oriented software systems: A 
systematic literature review," no. Wiley Online Library, 
2023.  

[16] M. Grechanik, C. McMillan, L. DeFerrari, M. Comi, S. 
Crespi, D. Poshyvanyk, C. Ghezzi and C. Quing, "An 

empirical investigation into a large-scale Java open 
source code repository," Proceedings of the 2010 ACM-
IEEE International Symposium on Empirical Software 
Engineering and Measurement, pp. 1-10, 2010.  

[17] Software QUALity Enhancement project, "Squale," 26 
Mai 2011. [Online]. Available: 
https://www.squale.org/index.html. [Accessed 19 Mai 
2023]. 

 

 


