
Science, Engineering and Technology Vol. 3, No. 2, pp. 97-105

www.setjournal.com https://doi.org/10.54327/set2023/v3.i2.73

Corresponding author: Hayatou Oumarou (oumarou.hayatou@univ-maroua.cm)
Received: 4 March 2023; Revised: 28 May 2023; Accepted: 2 June 2023; Published: 30 June 2023
© 2023 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License

 97

A Source-Code Maintainability Evaluation Model for Software Products

Hayatou Oumarou, Kolyang

 Department of Computer Science, Higher Teachers’ Training College, The University of Maroua, PO Box 55 Maroua, Cameroon

Abstract

The maintainability index (MI) has been proposed to calculate a single number which expresses the maintainability
of a system. This article presents a model for evaluating the maintainability of software products. The model improves
the shortcomings observed in the maintainability assessment approaches in the quality assessment models SQuaRE
(ISO25000), ISO 9126, Squale and the FCM standard. Its main innovation is to take into account the importance of
entities in the system when calculating the maintainability score. This implies that the same type of defect will have
a different score depending on the entity presenting it. Seven experts with several years of experience evaluated the
model. They confirmed the effectiveness and usability of the model. Then, we compared our model with the Squale
maintainability index and the classical maintainability index. The results show no correlation between these models.
The implications are that each method gives a slightly different view of maintainability.

Keywords: maintainability, software quality, metric, evaluation model.

1. Introduction

Nowadays, organizations are more and more
concerned about the quality of the software they use. The
numerous failures and errors, the evolution of the software
to meet future expectations, and the multitude of existing
hardware and software platforms make them conscious of
being concerned about the software quality. Therefore, it
is essential to assess the quality of their software. For
example, on June 15, 2022, a software failure obliged the
closure of Swiss airspace from 04:00 until 08:30.
Thousands of passengers were affected, and hundreds of
flights were canceled or diverted to neighboring airports
causing huge losses [1]. In such cases, urgent maintenance
is necessary. Studies have shown that 50-90% of software
effort goes into maintaining systems. Maintainability
strongly influences maintenance teams' productivity [2].
The reasons for this very high cost are multiple and often
misunderstood. Most of the software development time is
devoted to the maintenance phase. Improving an
application's maintainability quality positively influences
the latter's cost [2]. Thus, one of the main objectives of
software engineers is the development of easily

maintainable software. The maintainability of software
influences its overall quality. With maintainable software,
it is easy to modify parts, solve stakeholder problems very
quickly and manage the software efficiently [3].

To control the software quality, measuring and
evaluating its quality characteristics is essential. The
maintenance assessment is usually part of the quality
models that assess software quality. This evaluation uses
measurements, generally mathematical models,
considering the expected aspects. The maintainability is
an essential part to software quality. A quality model
relates the external quality of software to its internal
quality. Quality models combine the values of metrics and
raw data in a well-defined way to ease quality analysis.
Researchers have proposed measures, such as
maintainability index and quality models. For example,
McCall's FCM (factor, criterion and metric) model [4], the
Boehm model, the Dromey model, the ISO 9126 model
[5], the SQuaRE model [6], the Squale model [7], the
Squash model [8]. Most of these models offer guidelines
for evaluating the quality of a software product but often
ignore certain essential aspects to measure. Assessing the

Science, Engineering and Technology Vol. 3, No. 2, pp. 97-105

98

quality of software from metrics is not always easy. A
metric is defined and used for specific software
components (i.e., the SLOC (Source Line of Code) metric
for a method or the DIT (Depth of Inheritance Tree)
metric for class). Principles or rules to be measured
usually call for using several metrics belonging to
different ranges. Determining a score can involve solving
two problems:

- Compose metrics that are different from each other.
- Aggregate the results to find an overall score for a

criterion while retaining the information provided by
each raw score.

We cannot derive some measures from metrics, such
as assessing documentation quality. Instead, human
expertise is used to evaluate such features.

Based on these observations, we propose a new model
for measuring maintainability. To achieve this general
objective, we formulate four specific research objectives:
(1) Identify measurable maintainability characteristics of
software; (2) find the appropriate metrics used to measure
each characteristic; (3) define the mathematical formulas
or algorithms to be used for the calculation of the scores;
(4) validate and evaluate the formalized model by
applying it to concrete case studies.

The rest of the paper falls as follows: Section 2: State
of the art. This section presents related works. Section 3:
Proposed approach. This section describes the proposed
maintainability model. It highlights the architecture, and
the formulas used to calculate the scores in our model.
Section 4: Empirical assessment. In this section, we
validate the proposed model through case studies. Section
5: Conclusion.

2. State-of-the-art

Researchers propose many software maintainability
evaluation models. This paper focuses on the
Maintainability Index (MI) and Squale Maintainability
Index (SQI). There are several reasons for choosing these
models. On the one hand, the Maintainability Index is a
popular model proposed. Then the Squale model
implements the ISO9126 standard into practice. Our
model has its origins in the limits of these cited models.
These approaches implemented by tools are based on
metrics, so they assume a similar effort in collecting data.

The idea of the Maintainability Index (MI) was first
presented in 1992 by Oman and Heidegger [9]. They
present a study on 60 measurements and aggregate some
of them to evaluate the maintainability of software. They
then proposed the maintainability index evaluated by the
following formula:

MI=171−5.2ln(HV)−0.23(CC)−16.2ln(LoC)+0.99(CMT)

where

- HV is the average Halstead volume per module,
- CC is an average cyclomatic complexity per module,
- LoC is the average lines of code per module and
- CMT is an average of comment lines per module.

Software specialist consider the maintainability index
as controversial measure, despite its popularity. They
criticized the unclear explanation of formula, the use of
simple averages per file, the same formula till 1994, and
ambiguous connection between the results and specific
metrics in the code source. Several formulae are derived
from MI and are still used in some popular code editors
(e.g., Microsoft Visual Studio) [9].

The Squale quality model [10], designed by Qualixo
and Air-France KLM, comprises four layers, divided into
two levels: (i) the conceptual level defining the main
assessed principles of quality. It comprises factors and
criteria. The technical level outlines basic rules and
associated measures. Based on ISO 9126 and SQuaRE
standards, the model incorporates seven factors according
to empirical validations performed during the Squale and
Squash research projects. For this model, the
maintainability (which measures the ability of software to
facilitate the location and correction of residual errors), is
evaluated by the Squale Maintainability Index (SMI).
This, deals with the correction of non-conformity defects
about the specifications and not of defects resulting from
a poor expression of needs. The following criteria:
simplicity, interdependence, homogeneity and technical
documentation. Authors use formulas to combine and
aggregate source code metrics. They also use fuzzy logic
formulas, allowing quality evaluation from
measurements, not from metrics (raw data). The rating
value is in the interval [0, 3]. Squale is well-structured, it
clearly defines the quality factors. These factors are
decomposed into simple and easily measurable properties.
This model links the quality factors, and the metrics used
for their evaluations. However, considering

Science, Engineering and Technology Vol. 3, No. 2, pp. 97-105

99

maintainability as the ability to locate and correct errors
without considering the criticality of the localization
limits its evaluation. Similarly, the model does not
consider the capacity for modification and evolution.

SQuaRE model derived from Squale, is a family of
standards which divides software quality characteristics
into two quality models. Quality of use measures how
well a product or system meets user requirements to
achieve a specific goal; and product quality, measures
product characteristics related to software properties.
SQuaRE model has six main sections. Quality
measurement is discussed in section three and section five
looks at quality assessment. The SQuaRE standard is
gradually replacing existing standards related to software
quality, such as the ISO 9126 quality model. Al-Kilidar
[11] and [12] revealed limitations of the ISO 9126 and
SQuaRE (ISO25000) models for the
quality/maintainability assessment of software products.
Critics of this standard come from an experiment
involving design in pairs. One severe criticism they give
is that the 9126 standard does not provide guidance,
heuristics, empirical rules, or any other way indicate how
to use metrics, weight metrics, or even put them together
simply. However, by analyzing this model, we realize that
it also treats the defects of the same nature uniformly.

Our main goal is to evaluate maintainability through a
source code quality model. The proposed model combines
aspects of the ISO 9126, SQuaRE, Squale and Squash
models (see Table 1). We identified the model sub-factors
and criteria based on the limitations of the mentioned
models above. It aims to overcome certain limitations of
these models. Separating the characteristics of
maintainability and capacity for evolution, and not
considering the criticality of fault location (a fault in a
method used by several others differs from a fault in a less
used method). Evolutionary capacity must be integrated
with evolutive maintainability for a complete
maintainability evaluation [13].

By considering the modifiability sub-characteristic of
the SQuaRE model as being equal to the sub-
characteristics fusion: changeability and stability of the
ISO 9126 model [14], and considering that, the
analyzability sub-characteristic of the ISO 9126 model,
can be evaluated using the criteria: simplicity, technical
documentation and interdependence of the Squash model.

Table 1. Summary of the criteria for the “Maintainability”

 Models
 ISO

 9126

S
Q

uaR
E

(ISO

 25000)

S
quale

Squash

Criteria/sub-
characteristics

Analyzability ×
Changeability ×
technical documentation × ×
Homogeneity × ×
interdependence × ×
Editability ×
Modularity × ×
Reusability × × ×
Simplicity × ×
Stability ×
Testability × ×

3. Proposed Approach

To evaluate the maintainability, we break it down into
criteria, practices, and measures. Criteria defines the high
level of abstraction of maintainability fields. These fields
are changeability, technical documentation,
interdependence, homogeneity, modelization, modularity,
reusability, simplicity, stability, and testability. Each field
is evaluated through practices or measures. Practices and
measures are concrete and constitute the technical level of
our model. We have five practices: Code practices, norms
and standards practices, testing practices, documentation
practices, and model practices. Measures are raw data
collected from metrics or documents attached to the
project. We break down these measures into five major
groups: Code metrics (i.e., the number of lines of code),
Test metrics (i.e., coverage rate), Model metrics (i.e.,
number of attributes, number of public fields), Coding
conventions and Raw data. Raw data corresponds to the
audits/assessments performed by experts on the
application documentation. We assign each measurement
to the entity it measures (class, method, variable, etc.) and
aggregate them at the level of the project. Our approach
can be summed up in four major steps:

1) Calculation of the importance of an entity;
2) Calculation of an entity's score for a practice;
3) Aggregation of the entity's scores for a practice in

order to get the score of the practice at the project
level;

4) Aggregation of the project practices weighted scores
in order to get the maintainability score of the project.

Science, Engineering and Technology Vol. 3, No. 2, pp. 97-105

100

3.1. Calculation of the importance of an entity

To assess the maintainability of an entity, we use its
importance. The importance of an entity is given by
interactions it has with its environment. For this first
version, we consider variables, methods and classes that
we call candidate. The algorithm uses a mechanism
similar to Google's PageRank. For the sake of readability,
we present the algorithm in three parts. The main
algorithm is Importance. It takes the list of candidates and
returns a list of pairs (candidate, score) where score is the
maintainability score of the candidate. It uses the
Neighborhood and Score algorithms which calculate the
importance and the score of the candidate.

--

Algorithm Importance: return a list of couples (candidate,
score)

INPUT: L, the list of candidates
LOCAL: chg, the list of couple (l, c) where l in L and c the
computed score

For each l in L
 Chg add (l, score (l))
End for
For i=1 to threshold do
 For each (l, c) in chg
 (l,c)<-(l, (c + SUM l’ In Neighbor (l) score(l’)) /1+

(c + SUM l’ In Neighbor (l) score(l’)))
 End For
End for

 return Chg
--

Algorithm Neighbor: find neighbor of a candidate

INPUT: l, a Candidate
RETURN: N, a list of neighbor of l

Case type of l:
 Method : N <- senders(l) +methodSends()
 Class : N <- AllRefInside (l) + AllRefOutside (l)
End Case

 return N
--

Algorithm score: give a score to a candidate

INPUT: l, a Candidate
RETURN: c, the score for l

 c <- # neighbor(l) / 1+ #neighbor (l)
 return c
--

3.2. Calculation of an entity's score for a practice
and aggregation

The practice evaluation in our model follows the
Squash scoring model requirements. They are derived
from Squash procedures and formulas to compute the
different practices scores (code practices, norms, and
standards practices, test practices, model practices and
documentary practices).

We calculate scores in the interval [0; 3] like in Squash
according to the following meanings:

- between 0 and 1, the objective is not reached;
- between 1 and 2, the minimum was reached, but

with issues;
- between 2 and 3, the objective is reached.

Formula are specific to each practices.

3.2.1. Code practices scores

Code practices rely on metrics from code metrics. First,
we transform each value computed metric in the interval
[0; 3]. Each practice, therefore, gets a score per
component, called an individual score. Coding practices
are intimately linked to code smells [15]. They are: Self-
description, Spaghetti codes, Class cohesion, Copy paste,
Swiss knife, Cyclic dependency, Level of abstraction and
stability, Number of methods, Inheritance depth, Class
specialization, Size of a method, Comment rate.

For the criterion number of methods, for example, a
study on 2080 Java applications taken randomly from
SourceForge [16] found 938,779 methods defined in
270,973 Java classes. On average, there are 3.5 methods
per class (median equal to four) with a range of 1 to 1175
methods per class. We apply the following scale for this
criterion:

𝑛𝑜𝑡𝑒 = ൜
3 𝑖𝑓 𝑛 < 5

3 − (𝑛 − 5) ∗ 0,25
 (1)

Since the entities / candidates of the system do not
have the same importance, we compute the weighted
individual score:

𝑛𝑜𝑡𝑒𝐶𝑜𝑑𝑒(𝑐) = 𝑛𝑜𝑡𝑒 ∗ 𝐼𝑚𝑝(𝑐) (2)

where 𝐼𝑚𝑝(𝑐) is the importance of the entity 𝑐 given
by Importance algorithm.

Science, Engineering and Technology Vol. 3, No. 2, pp. 97-105

101

3.2.2. Norms and standards practices

These practices determine compliance with the coding
rules. The rules must be respected by the developers. The
overall score is the function of the number of
transgressions.

There are three types of transgression:

- Errors which are the most heavily weighted, we
denote their weight W1;

- Warnings which are moderately weighted, we
denote their weight W2;

- Slightly weighted information, we denote their
weight W3.

The weight applied to the transgressions reflects the
transgression importance, and we also consider the Imp(c)
importance of the entity where the transgression occurred.
It corresponds to the transgression tolerance by several
items (methods, classes, etc.). The formula used to
calculate the practice grade is of the form:

noteStandard=𝟑 ∗
𝟐

𝟑

𝑿𝟏∗𝑷𝒆శ𝑿𝟐∗𝑷𝒘శ𝑿𝟑∗𝑷𝒊

𝒎é𝒕𝒓𝒊𝒄 (3)

Where:

𝑃𝑖, 𝑃𝑒, 𝑃𝑤 = ෍ 𝐼𝑀𝑃 (𝐶𝑖)

௜

;

𝑋1 = 𝑊1 ∗ 𝐸𝑟𝑟𝑜𝑟𝑠;
𝑋2 = 𝑊2 ∗ 𝑊𝑎𝑟𝑛𝑖𝑛𝑔𝑠;

𝑋3 = 𝑤3 ∗ #𝐼𝑛𝑓𝑜𝑠

With W1 the weight applied to #Errors (the number of
errors), W2 the weight applied to #Warnings (the number
of warnings), W3 the weight applied to #Infos (the
number of information), and metric the metric used in
practice depending on the measured convention. The
norms and standard practices are: Formatting,
Programming, Naming convention, Configuration
management, Tracing, Portability, Documentation,
Safety.

3.2.3. Documentary practices

These practices are based on experts' analysis because
we cannot evaluate automatically them from metrics. This
analysis aims to verify required documents for the project
(documentation, user manual, etc.) and to determine their
quality. Since these practices are based on human
analysis, we do not compute the scores like those based
on metrics. Therefore, they also have a lifetime limit and

must be recomputed after a time. The documentary
practices are: Documentation quality, Exception
handling, Technical file: Safety, Layered slicing,
Production file, Security implementation/definition
compliance, Installation/un-installation manual, Machine
independence, System-software independence, Common
Communication, Common data. We evaluate these
practices using the linguistic terms [3=excellent,
2.5=good, 2=fair, 1.5=average, 0=insufficient]. We
represent each evaluated characteristic according to a
detailed model. Once the aggregate score is gotten, we
convert it into a numerical value in the interval [0; 3] to
be consistent with the model.

3.2.4. Testing practices

These practices assess the quality of the tests
performed. The base formulas are derived from [17]. Our
formulas just take into account the importance of the
entity evaluated according to the Algorithm Importance
presented in section 3.1. These evaluations, depending on
whether they are based on metrics or raw data, following
the same logic as the evaluation of code practices. The
considered test practices are: Test maturity, Anomaly
management, Management of anomalies after tests,
Version management, Load tests, Robustness tests,
Coverage of unit tests, Coverage of integration tests,
Configuration test coverage, Functional tests of non-
regression, System integration testing,
Configuration/installation tests, Coverage of system
integration tests, System data coverage, Success rate of
unit tests, Success rate of integration tests, Load test
covers, Coverage of non-regression tests, Coverage of
robustness tests.

3.2.5. Model practices

The model practices describe the rules and technical
principles to be observed to get a good project model.
Formulas are derived from [17]. Like testing practices, we
evaluate model practices in the same ways as code
practices or document practices, depending on whether
they are based on metrics or raw data. However, some
practices use basic metrics combination to compute their
individual scores. We verify specific rules, such as those
for accessing attributes, are respected for these practices.
For each component, the metric verifies compliance with
the rule, and the individual score assigned is

Science, Engineering and Technology Vol. 3, No. 2, pp. 97-105

102

- 0 if the metric returns a negative result, i.e., there
is at least one element that violates the rule;

- 3 if the metric returns a positive result, i.e., all
measured items follow the rule.

The model practices are: Modeling diagram,
Encapsulation, Pre-detection of anti-pattern, Model
reasoning, Conformity between modeling and
implementation.

3.3. Aggregation of the entity's scores for a
practice in order to obtain the score of the
practice at the project level

The second step, called aggregation, allows all the
results to be grouped to give an overall practice score in
the interval [0; 3]. This is a statistical-like operation
performed using a weighted continuous function to
calculate the overall project score for a practice. All
formula are derive from [17].

We can distinguish two cases:

- The score is computed at entities levels; we can
aggregate to system level by the general formula
for practice mark (for example code practice):

𝑃𝑀ఒ = −𝑙𝑜𝑔ఒ ቆ
∑ 𝜆ି௘௡௧௜௧௬ே௢௧௘೙௡

ଵ

𝑛
ቇ (4)

- The score is computed at system level, then
formula for practice mark (for example Norm and
standard Practice) is:

𝑃𝑀ఒ = −𝑙𝑜𝑔ఒ(𝜆ି௡௢௧௘௉) (5)

Where λ varies according to the applied weight;
entityNoten relates to the individual note for component n
and noteP the score for a Practice (example noteStandard

above). The weights λ  {30,9,3} reflect the tolerance
threshold of the model. We define them like this:

 We apply a strong weight λ = 30 when the
exception tolerance is extremely low. Here, a few
bad individuals mark to get a bad overall mark
(included in the interval [0; 1]);

 We use an average weight λ = 9 when the
exception tolerance is within the norm. The
overall score falls in the interval [0; 1] only if
there is an average number of low individual
ratings;

We apply a low weight λ=3 in the event of a
considerable exception tolerance. The overall rating then
only drops if there are many bad individual ratings.

3.4. Aggregation of the project practices weighted
scores in order to obtain the maintainability
score of the project

At this point we have the notes of each practice for
the system. They are aggregated to obtain the system
maintainability score using the following formula:

𝑂𝑀𝐼ఒ = −𝑙𝑜𝑔ఒ ቆ
∑ 𝜆ି௉ெ೙௡

ଵ

𝑛
ቇ (6)

4. Evaluation

Before presenting the result of the evaluation, we
present the dataset used for. We compare three
maintainability indexes: the Maintainability index MI
proposed by [9]; the Squale Maintainability Index SMI
and Our Maintainability Index OMI.

4.1. Building the dataset

The dataset comprises 20 open-source Pharo system
packages publicly available on GitHub
https://github.com/pharo-project. We judge these projects
ideal for our research because Pharo is an open source and
immersive nature. In addition, we have access to the
Squale model developers. Therefore, we operated on 20
packages. For each package, we evaluate the
maintainability according to the Squale model, the classic
maintainability index, and our approach. Using the
Maintainability Index to study source code and measure
maintainability is a proven approach. Although criticized,
it remains used by many. This shows the difficulty of
unavoidable maintenance tasks. Table 2 summarizes the
total number of entities in the dataset (packages, classes,
and methods). We selected the final versions of the
packages, considering the developers' domain of the
projects (packages). Therefore, if the selected projects are
from the same developers, they likely have the same
development styles. A considerable number of entities
must facilitate a comparison of approaches. To run the
analysis on the same platform, we selected the Moose tool
because it implements most of the building blocks. Our

Science, Engineering and Technology Vol. 3, No. 2, pp. 97-105

103

work will therefore comprise putting together these
blocks. Moose is an open source and immersive. It also
allows one to do Meta programming and is easily
extensible.

The real problem is the made interpretation despite
criticisms and shortcomings that must be overcome to
make it a widely accepted and representative measure. We
experimented on 20 real projects to perform statistical
tests. We then submitted our results to 7 systems experts.
The results got indicate our approach acceptance.

Table 2. Entities in evaluation dataset

Projects #line of code #class #methods
Balloon 4040 27 584
CodeImport 616 14 140
Colors 2166 3 267
Compression 3327 28 396
Spruce 2229 55 534
Geometry 2139 23 320
Hermes 755 34 203
Iceberg 5956 135 1492
Issue Tracking 56 3 16
Jobs 210 7 50
Merlin 6108 81 821
Monticello 6415 92 1368
Ombu 1156 29 225
PetitParser 2584 46 512
Reflectivity 2324 55 523
Renraku 1810 62 373
Roassal2 95842 775 8533
RoelTyper 1196 13 192
Trachel 7128 125 1306
UIManager 1009 9 235
Total 147066 1616 18090

4.2. Result and discussions

In this section, we summarize the results of the data set
evaluation concerning the three approaches. Figure 1
presents the evaluations of maintainability of some
packages by the three models. We change the scale of MI
to fit 0-3, so that we can visually compare models.

We chose seven experts who have in-depth knowledge
of the 20 projects. Each expert has actually contributed to
the maintenance of each of the projects through the history
of contributions (commits). Each answered the following
question: Which of the following measures best
represents the maintainability of the system? To each

expert, we proposed a graduated notation from 0 (low) to
4 (high) with a step of 0.1. The work consisted in putting
its appreciation of the maintainability score of the model
of each project in this graduation. The appreciation for a
model by an expert is therefore the average obtained from
the 20 projects. For the sake of reading, we have
multiplied these averages by 5 and validated it by the
expert. Table 3 presents the responses. We find that our
approach is the most accepted by experts.

Figure 1. maintainability values per models.

Table 3. Models evaluation by experts

Expert MI SMI OMI

Expert 1 6 8 10

Expert 2 5 11 8

Expert 3 7 7 10

Expert 4 8 10 6

Expert 5 4 12 8

Expert 6 9 8 7

Expert 7 4 4 16

 43 60 65

Table 4 shows the correlation between the
measurements. As we can see, data shows no correlation
between models. SMI-MI is the least comparable model,
with a correlation=0.3134646. SMI and OMI
(correlation=0.1540338) and MI-OMI
(correlation=0.1312529) showed similar distributions of
correlations, slightly in favor of OMI and MI, which have
lower variance.

Science, Engineering and Technology Vol. 3, No. 2, pp. 97-105

104

Table 4. Correlation between models.

 OMI SMI MI

OMI 1

SMI 0.1540338 1

MI 0.1312529 0.3134646 1

To see if these differences are statistically significant,
we run Wilcoxon signed rank tests and paired difference
tests to assess mean rank differences for the correlations.
The difference is statistically significant for the MI-SMI,
SMI-OMI and MI-OMI pairs we have respectively:

- t = 1.3891, df = 18, p-value = 0.1818, 95 percent
confidence interval: -0.1523466 0.6624574
sample estimates: cor =0.3111509,

- t = 0.6614, df = 18, p-value = 0.5167 95 percent
confidence interval: -0.3095896 0.5584864
sample estimates: cor 0.1540338;

- t = 0.56665, df = 18, p-value = 0.5779 95 percent
confidence interval: -0.3294348 0.5430901
sample estimates: cor 0.1323853.

Given the low correlation between MI, SMI, and OMI,
we have fewer similarities for the 20 projects chosen. SMI
and OMI are the models that show a weaker trend
correlation in the 20 projects considered. OMI is also the
model that seems more stable compared to other models.

4.3. Threats to validity

Like any empirical evaluation, our experiment's results
are subject to validity threats. We have identified the
following notable threats:

1. We performed the analysis on open source software
systems, all implemented in Smalltalk. The absence of
industrial/proprietary systems threatens the general
validity of our conclusions. These studied systems may
not fully represent a larger population of systems, either
systems from another domain or written in another
programming language. This threat is still problematic
because there is little information about the essential
properties for a representative system. Replication of the
experiment with other systems must be performed. We
strongly believe that our approach is independent of
programming language and application domain.

2. Judgments made on non-computable metrics by
experts during our experimentation may introduce biases.
However, we also believe that the experts who made these

judgments are the systems developers, which makes our
studies credible.

3. Internal threats to validity are related to the approach
implementation. For example, we carried the metrics
calculation out based on Moose, a proven open-source
tool. The loss of precision is caused by the composition
and aggregation of metrics values. Therefore, it is still
possible that our implementation of the approach contains
errors that may affect the accuracy of our results. To
counter this threat, we manually reviewed a subset of the
results and found no apparent errors.

5. Conclusion

We have proposed a simple and effective approach for
evaluating source code in order to identify and quantify
its maintainability. It corrects certain limitations of the
traditional models noted in the literature. The approach is
functional, exhaustive and takes into account the
importance of software entities. It can serve as a guide for
directing human inquiry, but one must be aware of the
limits of objective measurements. It is adaptable and
objectively reflects the level of maintainability of
software. The results obtained are easily interpretable.

We compared our approach with SMI and MI on a set
of 20 Smalltalk projects. We obtained a weak correlation
between MI, SMI and OMI. Thus, each model presents
the systems from different angles. The comparison of MI
and SMI results is comparable to previous research. These
differences presuppose that specialists adopting one or the
other model might have different perceptions of the state
of the project. Future work will extend the analysis to a
larger scale and gain more explanatory insights, such as
examining the relationships of models to common
software quality metrics. Long-term development of the
model to other factors, such as reliability and portability.

Competing Interest Statement

The authors declare no known competing financial
interests or personal relationships that could have
influenced the work reported in this paper.

Data Availability

No additional data or materials were utilized for the
research described in the article.

Science, Engineering and Technology Vol. 3, No. 2, pp. 97-105

105

References

[1] Skyguide, "Swiss Airspace Closed Until Further Notice,"

Skyguide, 15 06 2022. [Online]. Available: Skyguide.
https://www.skyguide.ch/media-centre/post/133592.
[Accessed 22 09 2022].

[2] C. Singh, N. Sharma and N. Kumar, "Analysis of software
maintenance cost affecting factors and estimation
models," International Journal of Scientific &
Technology Research, vol. 8, no. 9, pp. 276-281, 2019.

[3] B. Seref and O. Tanriover, "Software code
maintenability: a litterature review," International
Journal of Software Engineering & Applications (IJSEA),
pp. 69-87, 2016.

[4] J. A. McCall, P. K. Richards and G. F. Walters, "Factors
in Software Quality," NTIS Springfield,, 1976.

[5] ISO/IEC, "ISO/IEC 9126 - Software engineering –
Product quality.," ISO, 2001.

[6] ISO/IEC, "Software engineering Software product
Quality Requirements and Evaluation (SQuaRE) Guide to
SQuaRE," ISO Geneva, 2005.

[7] A. Bergel, S. Denier, S. Ducasse, J. Laval, F. Bellingard,
P. Vaillergues, F. Balmas and K. Mordal-Manet,
"SQUALE – Software QUALity Enhancement," RMoD
Team, INRIA, Lille, France, 2009.

[8] K. Mordal-Manet, "Squash, un modèle d'évaluation des
systèmes d'informations," Université Paris 8, 2012a.

[9] S. Peter, C. Stanislav and R. Bruno, "Comparing
Maintainability Index, SIG Method, and SQALE
forTechnical Debt Identification," Scientific programing,
vol. 2020, no. Hindawi, p. 14, 2020.

[10] K. Mordal-Manet, "Analyse et conception d'un modèle de
qualité logiciel," Université Vincennes - Saint-Dénis -
Paris 8, Paris, 2012b.

[11] H. Al-Kilidar, K. Cox and B. Kitchenham, " The use and
usefulness ofthe ISO/IEC 9126 quality standard,"
International Symposium onEmpirical Software
Engineering (ISESE 2005), no. IEEE, p. 126–132., 2005.

[12] H. I., K. T. and J. Visser, " A practical model for
measuring maintainability.," international conference on
the quality of information and communications
technology , pp. 30-39, 2007.

[13] A. Counet, Amélioration du processus de la maintenance
du logiciel par un système informatisé d’aide à la
décision, FUNDP, Namur: Institut d’Informatique, 2007.

[14] M. K. Chawla and I. Chhabra., "SQMMA: Software
Quality Model for Maintenability Analysis," Department
of Computer Science & Applications, Panjab University,
Chandigarh, India., pp. 1-9, 2015.

[15] R. Verma, K. Kumar and H. K. Verma, "Code smell
prioritization in object-oriented software systems: A
systematic literature review," no. Wiley Online Library,
2023.

[16] M. Grechanik, C. McMillan, L. DeFerrari, M. Comi, S.
Crespi, D. Poshyvanyk, C. Ghezzi and C. Quing, "An

empirical investigation into a large-scale Java open
source code repository," Proceedings of the 2010 ACM-
IEEE International Symposium on Empirical Software
Engineering and Measurement, pp. 1-10, 2010.

[17] Software QUALity Enhancement project, "Squale," 26
Mai 2011. [Online]. Available:
https://www.squale.org/index.html. [Accessed 19 Mai
2023].

