
Science, Engineering and Technology Vol. 4, No. 1, pp. 56-67

www.setjournal.com https://doi.org/10.54327/set2023/v4.i1.86

Corresponding author: Hayatou Oumarou (oumarou.hayatou@univ-maroua.cm)
Received: Received: 17 May 2023; Revised: 5 August 2023; Accepted: 18 August 2023; Published: 1 November 2023
© 2024 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License

56

Towards Automation of the FORM/BCS Method

Hayatou Oumarou1, Ibrahim Moussa Mahamat1, Donatien Koulla Moulla1,2
1University of Maroua, P.O. Box. 46, Maroua, Cameroon

2University of South Africa, 28 Pioneer Avenue, Florida Park, 1709, South Africa

Abstract

The software industry is facing more complex computer systems, with short development and sustainability issues.
To deliver good software with these constraints, software reuse has become a central concept for minimizing design and
realization costs. This study improves upon Feature-Oriented Reuse Method with Business Component Semantics
(FORM/BCS), a software development method that produces adaptable architectures from reusable domain
components. This is a promising method for reusable software assets and model creation. The objective of the
FORM/BCS is to bring the industrial production chain to the software. This study proposes a model to automatically
transform the FORM/BCS business subsystem component into a process business component. Two metamodels for
business subsystems and process business components were developed. In addition, this study establishes
correspondences between the source metamodel and target metamodel classes, transformation rules, and the instance of
the source metamodel and generates the target metamodel instance. Detailed findings can help practitioners reduce
software design costs and development time, and contribute to the advancement of knowledge in software engineering.

Keywords: Software product line, model transformation, automation, FORM/BCS method.

1. Introduction

The software industry faces a permanent crisis
because of the quality, cost, difficult development
process, and intangible nature of software. Software
engineering has evolved to address new issues
introduced by the penetration of computing into the
industry. The problem is no longer to develop one
software at a time but to design and develop a line (or a
family) of software. To respond to these recurring
problems, software engineers have developed new
paradigms including procedural, object, component, and
model technologies. One paradigm is Model-Driven
Engineering (MDE) [1] using models. The MDE
approaches describe systems under development and
their environments at different levels of abstraction.
These abstractions allow for the design of applications
independent of the target platforms. The MDE provides

a software development framework in which models
move from a passive (contemplative) to an active
(productive) state and become the first-class elements in
the software development process [2]. As a continuation,
many approaches have been developed, as in [3], [4], [5],
[6]. Similarly, Fouda [7] proposed the Feature-Oriented
Reuse Method with Business Component Semantics
(FORM/BCS) method. Automating the FORM/BCS
method allows easier maintenance, reusability, and
flexibility in adapting to changes. Moreover, it enables
developers to more efficiently deliver software with
relevant business components. However, implementing
the FORM/BCS method presents some limitations,
including limited applicability (the method might be
more suitable for certain types of projects or domains
and may not be a one-size-fits-all solution) and added
complexity to the development process, specifically for
smaller projects. This study proposes a method that can

Science, Engineering and Technology Vol. 4, No. 1, pp. 56-67

57

automatically transform a component with a high level
of abstraction into a more tangible one. This saves time
and improves quality and productivity during software
development.

The remainder of the paper is organized as follows.
Section 2 discusses the concepts of model
transformation, model transformation automatization
tools, and various model transformation approaches.
Section 3 presents the FORM/BCS software product line
method in detail. It then presents the specifications of the
different assets in the FORM/BCS method. Section 4
presents the proposed meta-models (a metamodel of the
subsystem business component, and a metamodel of the
process business component of the FORM/BCS
method). Then, it presents transformation rules to
automatically convert a subsystem business component
into a process business component. Section 5 evaluates
and discusses the case study results. Section 6 concludes
the study with a summary of the key findings.

2. Model Transformation

Model transformation represents one of the
significant challenges to be met from a technical
viewpoint to consider the wide dissemination of MDE.
The MDE fits naturally into the object approach and the
evolution of the component models. The MDE is built
around two fundamental concepts: models and
transformations. Any production process can be
considered a model linked by transformations.

Models are created for a specific purpose in this
process and transformations produce new models [8]-
[9]. From a general viewpoint, we call model
transformation any artifact/program whose inputs and
outputs are models. Automating transformations aims to
make models more operational and increase
development productivity using an MDE approach.

2.1. Definitions and terms clarification

To perform model transformations, we distinguished
between endogenous and exogenous transformations. A
transformation is endogenous if the involved models
come from the same metamodel; otherwise, it is called
an exogenous or translation transformation [10].

a) Endogenous transformations

 Optimization: transformation, which aims to
improve performance while maintaining
semantics.

 Refactoring: transformation, which involves a
change in the structure to improve certain
aspects of the quality of the software, such as
comprehension, maintenance, modularity, and
reuse without changing the observable
behavior.

 Simplification or normalization: transformation,
whose goal is to reduce syntactic complexity.

a) Exogenous transformations

 Synthesis: transformation from a level of
abstraction to a lower level of abstraction. A
typical example of this is code generation.

 Reverse engineering: The process of analyzing a
subject system to identify the system's
components and their interrelationships and to
create representations of the system in another
form or at a higher level of abstraction. This is
the reverse of the synthesis process described
above.

 Migration:transformation of a program written
in one language to another with the same level
of abstraction.

Another important factor to consider in
transformations is the abstraction level. Based on this,
we distinguished between horizontal and vertical
transformations. Horizontal transformation occurs when
the source and target models are at the same level. In
contrast [11]- [12], in vertical transformation, the models
involved are of different levels of abstraction. A typical
example of a vertical transformation is refinement [7].

The source and target models may or may not belong
to the same technological space in a transformation. A
technological space comprises a set of concepts, a body
of knowledge, tools, skills, etc., defining an operational
working context. For example, XML, MDA, and DBMS
are technological spaces. When a transformation
involves several technological spaces, import/export
tools are required to bridge the gap between these
different spaces.

Science, Engineering and Technology Vol. 4, No. 1, pp. 56-67

58

2.2. Approaches and tools for model
transformation

As previously mentioned, model transformations are
important for software development in MDE. The
effectiveness of this technology relies largely on the
model transformations. Their application (or use) covers
several aspects including [2]- [13]:

 Generation of lower-level or higher-level models;
 Synchronization of models;

 Reverse engineering;

 etc.

2.2.1. Transformation approaches

Several techniques have been used for model
transformations. According to the classification
proposed in [14]- [15], transformation approaches can
be classified into two broad categories: “model to
model” transformation approaches and “model to text”
transformation approaches.

a) “Model to model” approaches

 A “model to model” transformation, is defined by
generating target models from one or more source
models [16]. The level of abstraction can affect
transformation classification. In this category, there are
direct model manipulation approaches, relational
approaches, approaches based on graph transformations,
and approaches guided by the structure of models and
hybrid approaches. For instance, Misbah et al. [11]
proposed a metamodel of Z Notation to reduce
comprehension overhead and facilitate model-to-model
transformations. Through a case study, the proposed
metamodel demonstrates its ability to facilitate shared
understanding among stakeholders, leading to
unambiguous requirements specifications that can also
be automated for model-based development. However,
the authors did not automate the metamodel for model-
based development.

b) “Model to text” approaches

The “model to text” transformation, or model to code,
is considered as a particular case of model-to-model
transformations [17]. They often generate code in a text
format for practical reasons related to the reuse of
existing compilers. In this category, we distinguish two
types of approaches: approaches based on “visitor”

mechanism and approaches based on canvas or
“templates.”

2.2.2. Principles of model transformation

The transformation process comprises three stages as
follows:

 Definition of transformation rules;

 Expression of transformation rules;

 Execution of transformation rules.

a) Definition of transformation rules

Given a source model in an L1 language (such as
UML) and a target model in an L2 language (such as
Java), this step involves developing a mapping of the
concepts from L1 to L2 (e.g., a UML class corresponds
to one or more Java classes). Thus, we employed a meta-
modeling technique to establish a broad and generic rule
base. Transformation rules are established between the
source metamodel and the target metamodel between all
source model concepts and that of the target model. The
transformation process takes one or more models as
input, conforming to the source metamodels. The
process generates one or more additional models that
adhere to one or more target metamodels by utilizing a
predefined rule set.

b) Expression of transformation rules

To express the transformation rules, a rule-
specification language is required. Transformation
languages can be declarative, imperative, or hybrid [18].
In declarative programming, we describe the data and
their constraints. Unlike a declarative program, an
imperative program describes how a result can be
obtained by imposing a series of actions that the machine
must perform. A hybrid language combines both the
declarative and imperative programming paradigms.

c) Execution of transformation rules

 Once specified and expressed, rules require an
execution engine to be performed. This engine takes a
source model and metamodel, the target meta-model,
and the transformation rules as inputs. This outputs the
target model. Figure 1 illustrates the model
transformation process.

Science, Engineering and Technology Vol. 4, No. 1, pp. 56-67

59

Figure 1. Basic diagram of a transformation [18].

2.2.3. Properties of transformations

The main properties that characterize model
transformations are reversibility, traceability,
reusability, scheduling, and modularity [8], [9].

 Reversibility: Transformations can be
unidirectional or bidirectional. If a
transformation is performed in only one
direction, it is called a unidirectional
transformation. Reversible transformations can
be performed in both directions.

 Traceability: Traceability in transformations
involves creating and recording links between the
elements of the target models and those of the
source models. Some transformation approaches
do not offer a traceability mechanism, and the
user must manage the trace links.

 Reusability: Reusability allows transformation
rules to be reused in other model transformations.

 Scheduling: Scheduling represents the level of
nesting (chaining) of transformation rules.
Transformation rules can trigger other rules.

 Modularity: Modular transformation makes it
possible to model the transformation rules by
breaking down the problem. A model
transformation language that supports modularity
facilitates the reuse of transformation rules.

In this new perspective, the models occupy a space of
the first level among the artifacts of system development.
However, they must be sufficiently precise and rich to be
interpreted or processed by machines. The system
development process can then be seen as a sequence of
partially ordered transformations, where each
transformation takes one or more models as input and

produces one or more output models, up to executable
artifacts [19]. This transformation of the models is not an
easy task. Therefore, it is necessary to have robust and
flexible tools for managing templates and domain-
specific languages for their transformations and
manipulation throughout their life cycle.

3. The FORM/BCS Method

The FORM/BCS [7] is a promising software product-
line engineering method. The FORM/BCS has the
advantage of integrating variability in diagrams or
software development models, and explicitly provides
variation points. This approach allows transposition of
industrial production chains to the software world. The
FORM/BCS [20] extends FORM to business
components semantics. It transforms the design objects
of a domain produced by FORM (feature models,
subsystem models, process models, and modules) into
“reusable” design objects of this domain, called
“reusable enterprise components”.

The FORM/BCS method is specific to product line
engineering approaches in that its engineering process
combines “reuse engineering” and “domain
engineering” approaches. The horizontal FORM/BCS
process, which corresponds to the “application
engineering” approach, makes it possible to analyze a
product line domain and develop fundamental reusable
architectures. These abstract reusable models can be
refined (“engineering by reuse” approach) using the
vertical engineering process of FORM/BCS, with the
aim of deriving the specific business components of an
application domain of the domain that already has
reusable business database components.

3.1. Horizontal engineering process of the
FORM/BCS method

The objective of the horizontal engineering process is
to analyze a domain to produce its reusable business
components, which comprise the following [20]:

i. A functional business component;
ii. An enterprise business component of a sub-

system;
iii. A business process component and;
iv. A module business component.

Science, Engineering and Technology Vol. 4, No. 1, pp. 56-67

60

The horizontal engineering process has four
independent activities:

 Domain analysis activity: The domain analysis
activity, which is intuitive, produces a reusable
functional business component. The produced
component was stored in a reusable business
component database.

 Business subsystem architecture component
design activity: Considering the reusable
functional business component selected from the
database of reusable business components, the
activity of designing business components of the
sub-system architecture produces a reusable sub-
system architecture business component, which
is stored in a reusable business component
subsystem architecture database.

 Process architecture business components design
activity: This activity produces a set of business
components and a reusable process architecture.
These components are stored in a database of
business components with reusable process
architecture.

 Module architecture business component design
activity: This activity produces a set of business
architecture components for reusable modules.
These components were stored in a database of
the reusable business components of the module
architecture.

3.2. The vertical engineering process of the
FORM/BCS method

 The objective of the vertical engineering process was
to derive a reusable component database. The database
is derived from a domain application with a reusable
domain component database. The vertical engineering
process has four independent activities: analysis of
specific needs, design of specific subsystem architecture,
design of specific process architecture, and design of
specific module architecture [20].

By considering the application domain A of domain
D and a commercial component of functionality F of D,
the objective of the analysis of the specific needs of
domain A is to derive a component functionality F' of A
from F. For this, the activity, among others, makes
choices in F to reduce the number of optional

functionalities or grouping alternative functionalities in
the solution decomposition. The derived functional
business component F' is stored in the functional
business component database of A.

By considering the business component functionality
F' of an application domain A derived from a business
component functionality F of a domain D and of an
enterprise architecture subsystem S produced from D,
the objective of the specific subsystem architecture
design activity is to derive the sub-system architecture
business component S' from A from F' and S. For this
reason, the activity, among others, eliminates the
functionalities in the subsystems of the business
component of the architecture of subsystem S, which are
absent in the basic business component F'.

Considering the architecture sub-system, an
enterprise component S' of an application domain A
derived from an architecture sub-system, an enterprise
component S from a domain D, and a process
architecture process P produced from D, the objective of
the specific process architecture design activity is to
derive a process architecture process P' from A from S'
and P For this based on S', the activity adapts to the
business component of the process architecture P.

By considering the process architecture process P' of
an application domain A derived from architecture P, a
domain D, and a module architecture module M
produced from P, the objective of the specific module
architecture design activity is to derive a business
component architecture module M' from A from P' and
M. Here, based on P', the activity adapts the architecture
of enterprise architecture M. The possibility of
successive refinements of reusable commercial
components from one domain to more concrete
components (vertical engineering) is the main
improvement in the engineering application process of
the Original FORM.

3.3. The formal model of FORM/BCS core assets

The asset specification of the FORM/BCS method
was performed using the specification model defined by
Ramadour and Cauvet [21]. Code 1 represents the extract
of the model. Details of the specifications of the
components of the FORM/BCS method can be found in
[20].

Science, Engineering and Technology Vol. 4, No. 1, pp. 56-67

61

Code 1. Extract from Specifications of business components.
ReusableBusinessComponent ==
[name: Text; descriptor: Descriptor; realization:
Realization]
Descriptor == [intention : Intention ; context: Context]
Intention == [action: EnginneeringActivity; target: Interest
]
Context == [domain: Domain; process: 𝔽 Context]
EngineeringActivity == AnalysisActivity │
DesignActivity
AnalysisActivity = {analyze,…}
DesignActivity = {design, decompose, describe,
specify…}

3.4. The case study context

Among the software product line methods, we note
the Feature-Oriented Reuse Method (FORM) developed
by Kang et al. [3]. The FORM extends Feature-Oriented
Domain Analysis (FODA). It is a systematic method that
emphasizes the similarities and variability of
applications in a domain. These points are described in
terms of “characteristics,” and the obtained results are
used to produce reference architectures. The main
contribution of this approach is the decomposition of the
characteristic model into layers, allowing the description
of different points of view (e.g., services, operations,
treatments, presentation, etc.) concerning the
development of products. The model captures the points
of similarities and differences, called the "characteristic
model" and is used to support both the engineering of
reusable domain artifacts and the development of
applications using domain artifacts. Once a domain is
described and explained in terms of similar and different
“units” of processing, these are used to construct
different “possible” configurations of reusable
architectures [22]. Similarly, in 2009, Fouda and
Amougou proposed an extension of the FORM, called
Feature-Oriented Reuse Method with Business
Component Semantics (FORM/BCS) method [7]. The
specificities of FORM/BCS are as follows:

1. The integration of a business component
semantics into the artefacts;

2. The proposition of rules for the systematic
model’s production;

3. It implicitly integrates Model Driven
Engineering.

Therefore, our problem is a part of the automation of
the FORM/BCS method. Indeed, it performs automatic
component transformation from one level of abstraction
to another using metamodels. In this document, our
focus is on developing metamodels for the subsystem
business component and the process business component
of the FORM/BCS method, and the definition of the
transformation rules, allowing the automated conversion
of components [23]. These transformations are the
horizontal engineering processes of the FORM/BCS
Software Product Line method.

4. Automation of the FORM/BCS Method

Models have become the central paradigm in the
software industry, where researchers and practitioners
enrich the models used in the design of applications and
define new ones. This facilitates the creation of new
technological spaces that are more suited to user needs
and the different modeling stages necessary for product
development. Thus, to obtain a product that meets user
expectations, it is necessary to transform models from
one level of abstraction to another, or from one
technological space to another.

4.1. The business sub-system component of the
FORM/BCS method

A subsystem business component of the FORM/BCS
method is a reusable business component that describes
a system in terms of abstract subsystems and
relationships between them. Graphically, the solution is
represented as a symmetric Boolean matrix, in which
rows and columns represent the different subsystems of
the business component. The values in the matrix
indicate the existence of links between the subsystems.
In Code 2, we implement the formal specification of the
model of a business subsystem component.

The Architecture of a business subsystem component
comprises a set of subsystems and the links between
these subsystems. A subsystem comprises a
name, characteristic, or functionality, and a subsystem
has a string type and a feature of string type as
parameters.

Science, Engineering and Technology Vol. 4, No. 1, pp. 56-67

62

Code 2. Specifications of business subsystem component.
SubSystemBusinessComponent == [

name: Name;
descriptor: Descriptor;
realization: Realization /
∀ ssbc: SubSystemBusinessComponent,
(Solution (realization (CBMS)) Є
SubsystemArchitecture Adaptationpoints (realization
(CBMS)) Є 𝔽 (SubSystem × 𝔽 SubSystem)]
SubsystemArchitecture == [
subsystems: SubSystem;
links: 𝔽 (SubSystem × SubSystem)]
SubSystem = 𝔽 Feature

A feature specifies business activities. An event
applied to a set of object targets (data) causes an activity.
This is a generalization in the sense of object-oriented
analysis and decomposition. Thus, a feature takes as
parameter the name of an activity, the object on which
the activity operates, and decomposition. The
decomposition yields all the components: Standard
features that show the opportunity for reuse (optional
features and all alternative functionality groups). We
propose a meta-model represented in Figure 2 of the
business component sub-system of the FORM/BCS
method.

Figure 2. The meta-model of the sub-system business
component.

Figure 2 presents the following classes:

 SubsystemBusComp: A subsystem business
component has a name and comprises sub-
systems and links between them.

 Sub-system: A subsystem comprises a name, a
feature and a reference (link that links it to
another subsystem).

 Feature: A Feature has a name and eventually
decompositions.

 Decomposition: Decomposition has a name. This
is part of a characteristic. However, it can also
comprise (sub) characteristics.

 Generalization: Generalization has a name and
includes its characteristics.

4.2. Business process component of the
FORM/BCS method

A business process architecture component is a
reusable business component that represents a
competitive structure in terms of concurrent business
activities to which functional elements are assigned.
Code 3 represents the process business component
model specification.

A Process Architecture is a collection of business
activities and objects (data). Business activities run on
data and exchange messages across each other. They
exchanged these messages as action calls or in a null
environment.

Code 3. Specifications of process business component.

ProcessBusinessComponent == [name: Name;
descriptor: Descriptor;
realization: Realization /]
∀ pbc: ProcessBusinessComponent,

(solution (realization (pbc)) Є ProcessArchitecture
Adaptationpoints (realization (pbc)) Є 𝔽
(BusinessActivity × 𝔽 BusinessActivity)]

ProcessArchitecture == [
tasks: 𝔽 BusinessActivity;
datas: 𝔽 Class;
messages: 𝔽 [name: Name;
call: (BusinessActivity {null}) × (BusinessActivity
{null})]]

Business activity is a set of activities (sub-activities)
divided into three disjoint categories:

Science, Engineering and Technology Vol. 4, No. 1, pp. 56-67

63

 All the joint commercial activities that indicate
an opportunity for reuse (the typical character of
the commercial activity),

 All options for the commercial activities of the
activity (options of commercial activity), and

 Set of alternative business activity groups of the
activity (the conversion capacity of the business
activity).

The ability to have options and changes in business
activities is its variability. A business activity is
primitive (cannot be broken down). The metamodel of
the process business component of the FORM/BCS
method is shown Figure 3.

Figure 3. The business component meta-model.

Figure 3 presents the business component meta-
model with the following classes:

 ProcesBusComp: A business process
component includes a name, activities that
communicate through messages and they store
these in a database, classes (in the object-oriented
sense), allowing the representation of processes.

 BusnessActivity: A BusnessActivity has a name
and comprises the following three characteristics:
Optional (represents the optional characteristics
of the activities), Common (represents the typical
characteristics of the activities), Switchable
(represents the optional characteristics of the
activities).

 Dataaccess class has Dname as a parameter:
which represents the name of the stored activity.

 Message: This takes as a parameter Mname
representing the name of an activity and a
reference of each activity, which is a link
between two activities with interactions.

 Class: represents an activity in the object-
oriented sense (representing several similar
activities).

4.3. Diagram of the subsystem business
component model transformation into a
process business component model

Figure 4 presents subsystem model to process model
transformation where:

 MMSubSystemBusinesComp represents the
metamodel of the subsystem business
component;

 MMProcessBusinesComp represents the Meta
model of the process business component,

 MMSubSystemBusinesComp2MMProcessB
usinesComp represents the rules for
transforming the model from a subsystem
business component into a process business
component, and

 SubSystemBusinesComp and
ProcessBusinesComp represent the model of
the subsystem business component and the
model of the process business component,
respectively.

Figure 4. Subsystem model to process model transformation

Science, Engineering and Technology Vol. 4, No. 1, pp. 56-67

64

The business process model transformation of the
FORM/BCS method from the subsystem component
model is performed at the same level of abstraction. This
transformation occurred during the horizontal
engineering process of the FORM/BCS method. To feed
the translation engine, we need to bring the following
information must be provided to the system:

 The meta-model of the source model : MM
SubSystemBusinesComp ;

 The meta-model of the target model : MM
ProcessBusinesComp ;

 Subsystem model (domain model conforming to
subsystem metamodel or metamodel instance).

 The transformation code.

 These elements allow for automatic generation of
the target model or an instance of the target
model.

4.4. FORM/BCS business to process components
transformations rules

We used the Atlas Transformation Language (ATL)
to express the transformation rules. In addition to ATL,
we also used the QVT tool to derive rules for
transforming a business subsystem component into a
process business component. We established
correspondences between the elements of the source
meta-model and those of the target meta-model.

4.4.1. Source and target Transformation

By considering the two proposed metamodels, the
metamodel of the subsystem business component (of the
source model), and the metamodel of the process
business component (of the target model), we defined the
following correspondences between the elements
(classes):

1. SubsystemBusComp to ProcessBusComp
transformation: Converts subsystems into
activities. The links between subsystems become
messages exchanged between business activities.

2. Correspondence between the classes: Sub-system
and BusnesActv transformation: This
transformation concert links into messages and
transforms a subsystem into an activity.

3. Sub-system to Message transformation: This
transformation converts each subsystem message
as a link to identify the cooperating activities.

4. Sub-system to Dataaccess transformation: This
transformation makes it possible to maintain the
links established between the different
subsystems. The links between the subsystems
are represented using a Boolean matrix. The
existence of links between subsystems is saved.

5. Sub-system to Class transformation: Subsystem
transformation into a class makes it possible to
standardize the subsystems. Each subsystem is
assigned an attribute, which is a characteristic of
the subsystem.

6. Feature to BusnesActiv transformation: The
Class Feature is linked to an activity. Here, each
characteristic becomes a specific activity.

7. Feature to Message transformation: The Feature
class turns into a message. This means that they
exchanged messages between the two activities
with the same characteristics.

8. Feature to Dataaccess transformation: The
Feature class becomes a Dataaccess class because
the activities are stored and identified for their
characteristics.

9. Feature to Class transformation: The Feature
class transformation into class represents
activities with the same characteristics.

10. Decomposition to BusnesActiv transformation:
This transformation allows the conversion of the
Decomposition class into the BusnesActiv class
to allow the attribution of characteristics to
activities, the characteristics a:: optional,
switchable and standard.

11. Decomposition to Message transformation: This
transformation allows each message to represent
an activity with its characteristics.

12. Decomposition to Dataaccess transformation:
This transformation allows access to activities
with the same characteristics.

13. Decomposition to Class transformation: The
transformation of the Decomposition class into a
Class allows activities with the same
characteristics to be grouped together.

14. Generalization to BusnesActiv transformation:
This transformation allows the identification of
commercial activities with the same
characteristics.

Science, Engineering and Technology Vol. 4, No. 1, pp. 56-67

65

15. Generalization to Class transformation: The
transformation of the Generalization class into
the Class class allows the attribution of a
characteristic to the Class class (the attribute of
the Class class becomes a characteristic).

16. Generalization to Dataaccess transformation:
The transformation from Generalization class to
Dataaccess class allows access to activities with
the same characteristics.

17. Generalization to Message transformation:
transforms the Generalization class into a
Message class. Each message represented an
activity. Each exchanged message between
activities has the same generic characteristic.

This section presents our approach for transforming a
subsystem business component into a process business
component. In the next section, we present a case study
that details the different classes of the source model into
classes of the target model. Finally, we present the
results obtained after executing these transformations.

5. Evaluation and Discussion

The context of the case study is an actual model for
which we can access the assets described in FORM/BCS.
We explored the transition between the business
subsystem component and the business process of the
FORM/BCS method because they are our target, and we
have specifications available. Therefore, it is more
accessible to check the output of our tool. This choice of
a system modeled by a third party allows us to reduce the
influence we could have induced in the case study.
Therefore, we evaluate our solution for the different
cases presented in the Amougou thesis [22]. The
modeling works concerned the retirement process for
civil servants in Cameroon. This choice has several
additional advantages. We discuss the quality of our
results with the authors of real work using FORM/BCS.
This is not a bias because we are working on modeling
prior to this research, and we do not influence the way
we described the solution; we only evaluated it.

5.1. Presentation of the results

We evaluate our three-step approach. First, we
evaluate whether our approach can generate the business
component’s business process. Second, we evaluated the

relevance of the results and compared them with the
expected results. Third, we evaluated whether our
approach helps developers improve the quality of their
results and save time.

We used the career management specifications for
Cameroonian civil servants proposed by Amougou [24].
We moved all management components - subsystem
business components – to process components. This
shows that our approach generates business processes
from business components. Second, we compared and
discussed the results obtained after automatic generation
with those proposed by Amougou [24] and found that the
two results are similar. This allows us to conclude that
our approach allows automatic component generation.

In the third step, the transformation with our approach
is instantaneous, whereas when manually performed, it
is time consuming and can often lead to human errors.

5.2. Study limitations

As in any other empirical evaluation, the results of the
case study are subject to threats of validity. The
following notable threats were identified:

a) The systems studied may not be representative of
a larger population of systems or other fields of
application. This is always a complex threat to
mitigate because there is little information about
the system properties that are important for
ensuring representativeness. A case study of
replication in other systems should be performed.
We believe that our approach is independent of
the application field.

b) The approach does not allow traceability. There
is a lack of means to determine when a
transformation rule has been applied. This could
allow us to know, for example, whether a
sequence of application of the rules leads to a
particular situation.

c) This approach does not allow for rolling back,
which can result from a lack of traceability.
Rolling back into a problem makes it possible to
find a consistent system state.

d) The approach does not indicate priority/order
when applying the transformation rule: there is
no indication of how the rules are ordered. This

Science, Engineering and Technology Vol. 4, No. 1, pp. 56-67

66

can prevent block situations and inconsistent
states.

e) The approach does not clearly define any
precondition for applying transformation rules,
that is, there is no indication of the preconditions
in the transformation rules. This can leave the
system under modeling in an inconsistent state.

f) Internal threats to validity are linked to the
implementation of the proposed approach. It is
possible that our implementation of this approach
contains errors that may affect the accuracy of
our results. To counter this threat, we manually
investigated a subset of the results and found no
apparent errors.

However, the case study indicated the applicability of
the proposed approach within the framework of
FORM/BCS horizontal engineering. We believe that our
approach is the first step towards automation of the
FORM/BCS method and that the limits listed above are
actual but do not hinder our approach contribution.

6. Conclusion

This study proposed a novel approach to
automatically transform a high-level abstraction asset
into a low-level abstraction using the FORM/BCS
software engineering method. The metamodels of the
subsystem business component and that of the proposed
process business component enable seamless translation
from the business subsystem to the process component.
The proposed automation not only saves valuable time,
but also enhances product quality and increases team
productivity throughout the software development
process. This study highlighted the automation potential
of the FORM/BCS method and its applicability, and
identified some shortcomings through an empirical
evaluation. The findings of this study can offer valuable
insights for researchers and practitioners, enabling them
to improve product quality and the efficiency of the
development process.

Competing Interest Statement

The authors declare no known competing financial
interests or personal relationships that could have
influenced the work reported in this paper.

Data and Materials Accessibility

No additional data or materials were utilized for the
research described in the article.

References

[1] C. A. Medeiros, A. Bandeira, P. H. Maia and P.
Matheus, "MDE in the Wild: An Exploratory Analysis
on What Developers are Discussing from Q&A
Platforms," in SBES '20: Proceedings of the XXXIV
Brazilian Symposium on Software Engineering, 2020.

[2] A. Deniz, G. Vahid and D. Onur, "A survey on modeling
and model-driven engineering practices in the
embedded software industry," Journal of Systems
Architecture, vol. 91, pp. 62-82, 2018.

[3] K. C. Kang, S. Kim, E. Shin and M. Huh, "FORM: A
Feature Oriented Reuse Method With Domain-Specific
Reference Architectures," Annals of Software
Engineering, vol. 5, pp. 143-168, 1998.

[4] B. Young-Min, M. Zelalem, S. Yong-Jun and B. Doo-
Hwan, "A Modeling Method for Model-based Analysis
and Design of a System-of-Systems," in 27th Asia-
Pacific Software Engineering Conference (APSEC),
Singapore, 2020.

[5] J. Gonzalez-Huerta, A. Boubaker and H. Mili, "A
business process re-engineering approach to transform
BPMN models to software artifacts.," in Aïmeur, E.,
Ruhi, U., Weiss, M. (eds) E-Technologies: Embracing
the Internet of Things. MCETECH 2017. Lecture Notes
in Business Information Processing, vol. 289, Springer,
Cham, 2017, pp. 170-184.

[6] C. B. Markus, V. Borozanov, S. Gokay and K.-H.
Krempels, "Semi-automated Business Process Model
Matching and Merging Considering Advanced
Modeling Constraints," in 19th International
Conferenceon Enterprise Information Systems (ICEIS
2017), 2017.

[7] N. M. Fouda and N. Amougou, "The Feature Oriented
Reuse Method with Business Component Semantics,"
International Journal of Computer Science and
Applications, vol. 6, no. 4, pp. 63-83, 2009.

[8] H. Barangi, R. Kolahdouz, B. Zamani and A. Khasseh,
"Model-Driven Software Engineering: A Bibliometric
Analysis," Journal of Computing and Security, vol. 8,
no. 1, pp. 93-108, 2021.

[9] S. Shane and K. Wojtek, "Model transformation: the
heart and soul of model-driven software development,"
IEEE Software, vol. 20, no. 5, pp. 43-45, 2003.

[10] P. D. F. C. Marco, "Model Assisted Software
Development-a MDE-Based Software Development
Methodology, PhD.," University of Hertfordshire,
Hertfordshire, 2022.

Science, Engineering and Technology Vol. 4, No. 1, pp. 56-67

67

[11] M. A. Misbah, A. Farooque, W. A. Muhammad and R.
Yawar, "Formal Requirements Specification: Z
Notation Meta Model Facilitating Model to Model
Transformation," in Proceedings of the 9th
International Conference on Software and Information
Engineering (ICSIE '20), New York, 2020.

[12] S. Umair, A. Farooque, U. H. Sami, W. A. Muhamad,
H. B. Wasi and A. Anam, "A Model Driven Reverse
Engineering Framework for Generating High Level
UML Models From Java Source Code," IEEE Access,
vol. 7, pp. 158931-158950, 2019.

[13] B. Losan, "Transformation de Modèles et
Interopérabilité dans la conception des systèmes
héterogènes sur puce à Base d'IP.PhD," Université
Science et tecnologie de LILLE, Lille, 2006.

[14] B. Frank, S. David, M. Ed, E. Raymond and G. Timothy,
Eclipse Modelling Framework, Addition Wesley, 2004.

[15] A. Bunker and G. Gopalakrishnan, "Formal
Specification of the virtual component interface
standard in the unified modeling language.," University
of Utah, 2001. [Online]. Available:
https://www.cs.utah.edu/docs/techreports/2001/pdf/UU
CS-01-007.pdf.

[16] OMG, "MDA Guide," 12 June 2017. [Online].
Available: http: //www.omg.org/docs/omg/03-06-
01.pdf.

[17] B. Annette, G. Gopalakrishnan and S. A. Mckee,
"Formal hardware specification languages for protocol
compliance verification," ACM Transactions on Design
Automation of Electronic Systems, vol. 9, no. 1, pp. 1-
32, 2004.

[18] Z. Zhu, Y. Lei, Q. Li and Y. Zhu, "Formalizing Model
Transformations Within MDE.," in Song, H., Jiang, D.
(eds) Simulation Tools and Techniques. SIMUtools
2019. Lecture Notes of the Institute for Computer
Sciences, Social Informatics and Telecommunications
Engineering, vol. 295, Springer, 2019, pp. 25-42.

[19] C. Bernard, S. Diaw and R. Lbath, "État de l’art sur le
développement logiciel," Laboratoire IRIT, Toulouse,
2017.

[20] N. M. Fouda and N. Amougou, "A Rewriting System
Based Operational Semantics fo the Feature Oriented
Reuse Method," International Journal of Software
Engineering and Its Applications, vol. 7, no. 6, pp. 41-
60, 2013.

[21] C. Cauvet and R. Philippe, "Approach and Model for
Business Components Specification," in Hameurlain,
A., Cicchetti, R., Traunmüller, R. (eds) Database and
Expert Systems Applications. DEXA 2002. Lecture
Notes in Computer Science, vol. 2453, Berlin,
Heidelberg, Springer, 2002.

[22] N. S. F. Merveille, "Conception et réalisation d’un
éditeur des composants métiers caractéristique de la
méthode FORM/BCS," Université de Douala, Douala,
2017.

[23] A. Ngoumou et M. Fouda Ndjodo, «A Command
Oriented: Derivation Approach with product specific
architecture optimization,» International Journal of
Software Engineering and Its Applications, vol. 9,
n° %12, pp. 23-40, 2015.

[24] A. Ngoumou, "Extension de la méthode FORM pour la
Production des architectures adaptables de domaine,"
Universite de Yaounde I, Yaounde, 2011.

