Prediction of User Throughput in the Mobile Network Along the Motorway and Trunk Road

Authors

  • Zoran Ćurguz University of East Sarajevo, Faculty of Transport and Traffic Engineering Doboj, Bosnia and Herzegovina
  • Milorad Banjanin University of East Sarajevo, Faculty of Philosophy Pale - Department for computer science & systems, Pale, Bosnia and Herzegovina https://orcid.org/0000-0002-4704-0435
  • Mirko Stojčić University of East Sarajevo, Faculty of Transport and Traffic Engineering Doboj, Bosnia and Herzegovina https://orcid.org/0000-0003-3258-5480

DOI:

https://doi.org/10.54327/set2022/v2.i2.38

Keywords:

Prediction, Throughput, Machine learning, CFS, k-NN, Relative error

Abstract

The main goal of this research is to create a machine learning model for predicting user throughput in the mobile 4G network of the network provider M:tel Banja Luka, Bosnia and Herzegovina. The geographical area of the research is limited to the section of Motorway "9th January" (M9J) Banja Luka - Doboj, between the node Johovac and the town of Prnjavor (P-J section), and the area of the section of trunk road M17, between the node Johovac and the town of Doboj (J-D section). Based on the set of collected data, several models based on machine learning techniques were trained and tested together with the application of the Correlation-based Feature Selection (CFS) method to reduce the space of input variables. The test results showed that the models based on k-Nearest Neighbors (k-NN) have the lowest relative prediction error, for both sections, while the model created for the trunk road section has significantly better performance.

Downloads

Download data is not yet available.

Downloads

Published

31.10.2022

How to Cite

[1]
Z. Ćurguz, M. Banjanin, and M. Stojčić, “Prediction of User Throughput in the Mobile Network Along the Motorway and Trunk Road”, Sci. Eng. Technol., vol. 2, no. 2, pp. 23–30, Oct. 2022, doi: 10.54327/set2022/v2.i2.38.

Similar Articles

1-10 of 23

You may also start an advanced similarity search for this article.